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ABSTRACT 
Trust is a factor that is becoming more prominent in human robot 
interaction research. Only few approaches so far tackle the chal-
lenge of data-driven trust assessment. In this paper, we present 
a data set consisting of motion tracking data from an industrial 
human robot collaboration task. The data is collected during a trust 
manipulation experiment that has been designed to elicit diferent 
trust levels in the participants. Additionally, participants flled out 
a standard trust questionnaire. The data set allows for developing 
and testing data-driven trust assessment algorithms. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); • Computing methodologies → Machine learning. 
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trust assessment, human-robot collaboration, motion tracking, ma-
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1 STUDY OVERVIEW 
While trust is an emergent factor in human robot interaction re-
search ([6–8]), most trust measurements rely on post-hoc, subjec-
tive questionnaire data. This allows for using trust as an evaluation 
criterion for the system and interaction design similar like it has 
been used in automation for a long time (e.g. [5]). If trust could 
be linked to observable behavior of the user instead, then trust 
could become a factor that allows for adapting robot behavior in 
real-time in order to match or regulate the user’s trust level. First 
attempts have been made for such a real-time trust assessment (e.g. 
[4, 9, 12]), but so far there are no data sets available for developing, 
testing, and comparing data-driven trust assessment. 
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Figure 1: Collection of benchmark data base depends on iden-
tifcation of relevant trust factors and behaviors in a given 
application context. 

In the Drapebot project1, we are developing such a data-driven 
trust estimation system to ensure safe collaboration between a 
large industrial manipulator and a human worker in the context 
of draping of carbon-fbre pieces. To this end we have collected an 
extended data set of full body movement data and trust ratings in 
diferent task contexts, the transport of large textile cut pieces and 
a simulated draping of these cut pieces (see Section 2 for a detailed 
description). Because trust is a multidimensional concept that is 
afected by a broad range of diferent factors both relating to the 
user, the robot, and the environment [3], a number of criteria have 
to be fulflled for creating such a data set, which are highlighted in 
Figure 1 and explained for our data set in the following: 

Trust factor identifcation. : According to [3], we can distinguish 
between a large number of human-, robot-, and environment-related 
trust factors. For the given context it has to be clear which factors 
infuence trust ratings, e.g. in an industrial setting with a collabora-
tive robot proximity of the robot or it’s speed would be relevant, 
whereas in a social setting with a small table top robot anthro-
pomorphism or robot personality could be more relevant. From 
previous experiments [2], we know that speed of the robot plays a 
crucial role in perceived trust levels as well as in trust dynamics, 
e.g. for a robot with high speed starting trust levels are lower and 
it takes longer to reach a stable trust rating. Thus, the factor used 
in the data collection is the speed of the robot. 

User behavior identifcation: Again, relevant user behaviors are 
context-dependent, in the case of an industrial collaborative robot, 
movement data of the upper body could be relevant, in case of the 

1https://drapebot.eu 
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Figure 2: The collaborative transportation and draping task performed in the experiment. 

social robot interaction, EEG data or facial expressions could be 
more relevant. For the Drapebot data set, the user has to move textile 
material across a room together with the robot. Thus, we collected 
full body movement data, hypothesizing that movement patterns 
will be diferent between low and high trust towards the robot. This 
hypothesis was drawn in analogy to emotion recognition, where it 
has been shown that movement expressivity can be linked to the 
user’s emotional state (e.g. [10]). 

Principled manipulation of trust during the data collection: When 
context-relevant trust factors have been identifed together with 
their impact on trust evaluations by the user, then this knowl-
edge allows for the elicitation of specifc trust levels during the 
experiments, which can later be used for automatic labeling of the 
collected data. Based on our knowledge about the dynamics of trust 
development over time in relation to the robot speed [2], the exper-
imental setup manipulated this factor across participants and tasks 
(see Section 2). 

Extended collection of sensor data: While many questionnaire 
based studies rely on single interactions, we would argue that it is 
necessary to collect data over several task iterations to capture the 
dynamics of trust development. 

Ground truth collection with standardized questionnaire. For each 
task, one of the standard trust questionnaires should be used for 
collecting a ground truth for the trust ratings of the individual 
participants. These ratings can be used for labeling purposes as 
well as for personalization purposes. For the Drapebot data set, we 
used the widely-used Trust perception scale - HRI [11]. 

The potential use of the data set is frst and foremost for the de-
velopment and evaluation of data-driven trust assessment models. 
With such models in place, trust monitoring and regulation become 
feasible, enabling safe and fuent human robot collaboration. Other 
uses include the in-depth analysis of movement quality and move-
ment dynamics in extended repetitive interactions. For instance, 
during the data collection we observed diferent distinct walking 
styles in the transport task, from which some seemed to be more 
stable than others. 

So far, the data has been used to derive motion descriptors based 
on Laban movement analysis [1] and to train a deep learning trust 

assessment algorithm for collaboration with large industrial manip-
ulators. Result of the trust assessment is a trust score that is used to 
visualize the worker’s current trust to the system so that s/he can 
adapt behavior accordingly, e.g. be more careful, when the system 
signals that the worker trusts the robot too much. 

2 METHODS 
The data was collected in an experiment where participants per-
formed collaborative tasks with a Kuka KR 300 R2500 ultra robot. 
The tasks were designed to emulate collaborative transport and 
draping of carbon fbre cut pieces in the production of parts, such 
as outer parts for vehicles2. The collaborative transportation task 
consisted of the robot and the participant grabbing each their end 
of a towel laid out on a table before carrying it and laying it down 
on another table two meters away. This task is shown in Figure 2 
(left). The collaborative draping task consisted of the robot bringing 
a cloth down above a table, leaving it bunched up on the table sur-
face. Once the robot was at a complete stop the participants were 
instructed to approach the table and tug at the cloth to spread it as 
evenly across the table surface as they could before returning to 
their starting position, after which the robot would pull the cloth 
away and start the task over. This task is shown in Figure 2 (right). 
Both of these tasks were performed repeatedly by the participants 
as many times as they could within a ten-minute time limit. At no 
point in the duration of the experiment were the participants within 
collision reach of the moving robot. Safe areas were marked on the 
foor and the participants were monitored by the test conductor, 
who also had an emergency button within reach at all times. 

The experiment was performed with speed as a between-subjects 
condition. Participants performed either the transportation or the 
draping task frst. Second, during the transportation task, the robot 
would move at either a slow speed setting or a fast speed setting. 
Before the frst tasks, as well as after both the frst and second task, 
participants flled out Schaefer’s[11] 14-item human-robot trust 
questionnaires. 

At the beginning of the experiment the participants were dressed 
in the Xsens MVN Awinda tracking suit for full-body tracking. 

2A demo video of the data collection tasks is available here: https://youtu.be/ 
5pAXF7t1Us4 
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High quality tracking requires measurements of the participants 
body. Before putting on the tracking suit we measured height, foot 
length, shoulder height, shoulder width, elbow span, wrist span, 
arm span, hip height, hip width, knee height and ankle height. 
The suit consists of a tight-ftting shirt, straps, a headband and 17 
inertial measurement units (IMU). The IMUs were applied by the 
test conductor before an N-pose calibration was performed. Figure 
3 provides an overview of the placement of the IMU units on the 
body of the participant. 

Figure 3: Placement of IMU units. 

In addition to the IMUs we utilized a SteamVR tracking space 
with HTC Vive Trackers for position-aiding in order to counter 
position drift over time. In addition, one HTC Vive Tracker was 
placed on the robot itself for tracking its movements, allowing us to 
separate the steps of the collaboration in the recorded tracking data 
afterwards (see Section 3.2). All tracking sessions were refned after 
the experiments with the build-in HD reprocessing in the Xsens 
tracking sotware. 

3 DATASET 
Data has been collected in the transport and draping tasks (coun-
terbalanced) from 20 participants, 7 female and 13 male, average 
age 25 (SD = 4.0). Average height was 1.74 meters (SD = 0.1). One 
session consists of 24 trials on average for the transport task with 
an average duration of 19.4 seconds per repetition and of 23.6 trials 
for the draping task with an average duration of 18.6 seconds. This 
resulted in 479 repetitions for the transport task (9276 seconds) 
and 472 for the draping task (8777 seconds). For all sessions, body 
tracking was performed using the Xsens MVN Awinda tracking 
suit. It consists of a tight-ftting shirt, gloves, headband, and a series 
of straps used to attach 17 IMUs to the participant. After calibration 
the system uses inverse kinematics to track and log the movements 

of the participant at a rate of 60 Hz. The measurements include lin-
ear and angular speed, velocity, and acceleration of every skeleton 
tracking point3. 

For each task (transport and draping) the data set consists of a 
folder with 20 individual fles, one for each participant. The naming 
convention for these fles follows a pattern wherein "P01SD" denotes 
a participant in the draping task (with "D" representing draping), 
and "P01ST" represents a participant in the transport task (with "T" 
indicating transport). Each of these fles is in xlsx-format. In addition 
to these task-specifc fles, three xlsx-fles are available. Two of these 
fles are dedicated to annotating the collected data, one for draping 
and one for transport. The third xlsx-fle contains the trust scores 
associated with each task for each participant respectively. This 
organization ensures a systematic approach to data management 
and analysis within the research repository. In the following, we 
describe each fle type in detail. 

3.1 Tracking Data 
For each fle generated by the Xsens tracking system, the data are 
categorized into sessions, each with its unique characteristics: 

(1) Segment Orientation - Quaternion, (2) Segment Orientation 
- Euler, (3) Segment Position, (4) Segment Velocity, (5) Segment 
Acceleration, (6) Segment Angular Velocity, (7) Segment Angular 
Acceleration, (8) Joint Angles ZXY, (9) Joint Angles XZY, (10) Er-
gonomic Joint Angles ZXY, (11) Ergonomic Joint Angles XZY, (12) 
Center of Mass, (13) Sensor Free Acceleration, (14) Sensor Magnetic 
Field, (15) Sensor Orientation - Quaternion, (16) Sensor Orientation 
- Euler. 

For each of the 17 sensors, this data is provided for the X, Y, and 
Z axes, as well as combined data. For more detailed information 
regarding the specifc data types and sensors, please refer to the 
XSENS manual. 

3.2 Data Annotation 
The two task consist of diferent phases, which are exemplifed in 
Figure 4. In the transport task, we can distinguish between picking 
up the textile, transporting it to the other table, dropping it on the 
table and returning to the starting point. Draping task consists of 
approaching the table, draping the textile and returning to the start-
ing point. For each task, a separate fle named "sorted_draping.xlsx" 
and "sorted_transport.xlsx" exists. These fles follow the follwing 
format: 

1. column: frame number in the corresponding tracking data 
fle, e.g. P01SD.xlsx 

2. column: annotations for participant 01 on a frame by frame 
basis 

3. column: annotations for participant 02 on a frame by frame 
basis 
... 

21. column: annotations for participant 20 on a frame by frame 
basis 

For the transport task, there are four annotations: "pick," "trans-
port," "drop," and "return". In the case of the draping task, there are 
three distinct annotations: "approach," "draping," and "return". 
3see the Xsens manual for a detailed description of available measurements: https: 
//base.movella.com/s/article/Output-Parameters-in-MVN-1611927767477 
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Figure 4: Position tracking of the robot allows to annotate the diferent phases of the transport (left) and draping task (right). 

Figure 5: Distribution of trust scores in the data set. 

3.3 Trust Scores 
The trust scores associated with the data are based on the partici-
pants’ answers to the questions of the Trust perception scale HRI. 
Figure 5 gives an overview of the trust score distribution across the 
diferent tasks and speeds. The table contains two entries for each 
participant, one for the transport and one for the draping task. The 
fle consists of two parts. First, some demographic information is 
provided for each participants: 

• Subject: Denoting the participant number 
• Transport Speed: Indicating whether the session was con-
ducted at a fast or slow pace 

• Age: Refecting the participant’s age 
• Gender: Identifying the participant’s gender 
• Dominant Hand: Specifying the participant’s dominant hand 
• Height: Providing information about the participant’s height 

Then the answers to each question of the 14 questions from the 
instrument are given: 

• Which % of time does the robot (1) Function successfully, (2) 
Act consistently, (3) Communicate with people, (4) Provide 
feedback, (5) Malfunction, (6) Follow directions, (7) Meet the 
needs of the task, (8) Perform exactly as instructed, (9) Have 
errors, (10) Provide appropriate information. 

• Which % of the time is the robot (1) Unresponsive, (2) De-
pendable, (3) Reliable, (4) Predictable. 

The overall trust score is then calculated based on responses 
to these questions and provided as an additional column. The last 
column denotes the task as either "Transport" or "Draping". On our 
Github4, we provide an example Jupyter notebook for importing 
the data into Python for further processing. 

4 USAGE NOTES 
The data set is available on Zenodo5 as open access with the Cre-
ative Commons Attribution 4.0 International License following 
FAIR principles. When using the data set, we would be grateful 
for a reference to this paper. While the data set contains human 
subject data, this data is anonymous (both motion tracking and 
questionnaire data) and does not pose any ethical problems. The 
data collection and sharing has been approved by the research 
board at Aalborg University. 

Trust is of increasing interest in the HRI community as can 
be seen by the number of publications in recent years. It is our 
conviction that a data-driven approach to trust will boost the use-
fulness of the concept for safe, fuent and adaptive human robot 
collaboration. To this end, data sets like this one are necessary for 
testing, evaluating and benchmarking approaches to data-driven 
trust assessment. 
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