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Abstract— The collaboration between humans and robots in
industrial scenarios is one of the key challenges for Industry 4.0.
In particular, industrial robots offer accuracy and efficiency,
while humans have experience and the capability to manage
complex situations. Combining these features can enhance the
industrial process by avoiding the user manipulates heavy
weights and allowing him to dedicate his efforts to tasks
where flexibility, quality and experience make the difference in
the final product. However, the collaboration between humans
and robots raises several new problems to be addressed like
safety, tasks scheduling and operator ergonomics. For example,
human presence in the robot workspace introduces various
elements of complexity into robot planning due to its dynamism
and unpredictability. Planning must take into account how to
coordinate the tasks between the robot and the human and
be quick in re-planning to respond reactively to the operator’s
trigger. For this purpose, this work proposes a hierarchical
Human-Aware Task Planner framework capable of generate
a suitable plan to complete the process and manage user
interrupts in order to have a constantly updated plan. The
method is evaluated in a real industrial scenario and in a specific
complex assembly task like the draping of carbon fiber plies.

Index Terms— Human-Aware Task Planner, Human Action
Recognition, Human-Robot Collaboration, Dynamic industrial
scenario

I. INTRODUCTION

Human-Robot Collaboration (HRC) in the industrial sce-
nario is one of the most important technological challenges
of recent years. The synergy between the robot’s abilities,
like precision, accuracy, efficiency and repeatability, along
with human intelligence, flexibility and experience provides
several advantages because it reduces the operator’s effort
and improves ergonomics during the operations, ensures
the production quality and accuracy [1]. To be able to
fully benefit from these advantages, while at the same time
ensuring user safety when working with the robot, intelligent
task coordination between humans and robots is required.
A task planner takes over this intelligent coordination of
activities. Moreover, this implies that it is necessary to use
a planner that takes into account the user.
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Fig. 1: Dynamic Human-Aware Task Planning Framework
for Human-Robot Collaboration.

Since a shared industrial environment between humans
and robots is a highly dynamic scenario, the classical task
planner approaches are infeasible: they assume that the
workspace is deterministic, the state is fully-observable, the
robot is the only agent that can change the workspace, and
actions are instantaneous. Therefore, to be usable in dynamic
environments, task planners must deal with unpredictable and
partially uncontrollable situations, especially due to human
behaviour [2]. Several approaches have been investigated
over the last few years to handle the dynamic scenario:
from Artificial Intelligent Planning like PDDL [3] or Markov
Decision Process [4] through Finite State Machine [5] to
timeline-based approaches [6]. Multi-level programming [7]
and Task Allocation [8] solutions are also very common ap-
proaches. Finally, game-theory and Reinforcement Learning
(RL) models and methodologies are widely applied to multi-
agent task scheduling problems [9], [10].

This paper proposes the Dynamic Human-Aware Task
Planner framework for HRC in an industrial scenario sum-
marized in Fig. 1. In particular, it focuses on the dynamic
scheduling of shared human-robot activities within a man-
ufacturing environment where humans and robots have to
collaborate to complete complex tasks like object sorting,
production line assembly [11] or draping [12].

Draping is one of the most complex operations in carbon
fibre manufacturing. It is carried out by transporting the
carbon ply onto the mould and adapting its shape to the
mould. Nowadays, this process is completely manual and
performed by expert human operators. In addition, the human
operator is in charge of transporting the plies from a table
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to the mould and then draping it. The EU project DrapeBot1

aims at developing an HRC system capable of assisting an
operator working on the draping of carbon fibre parts. In
order to manage that process, a collaborative task planner
must be used.

To address the requirements outlined above, we propose
a hierarchical task planner that exploits the symbolic de-
scription of the process, the definition of Primitives and
Composites actions and human commands to generate a
suitable and continuously updated plan for the assembly
process. In detail, our contribution follows:

• Dynamic Human-Aware Task Planner framework,
which is able to compute human and robot activities
and handle the user commands to update the plan.

• Using primitive actions to create more complex, so-
called composite actions, which contribute to the cre-
ation of the final plan.

• Intelligent Action Recognition to trigger activities or
robot behaviour not foreseen in the plan but which the
expert user wants to perform.

II. RELATED WORKS

In recent years, task planning problems for HRC have
been investigated. Existing works like [13], [14] tried to
explore the knowledge encoded in the CAD model to extract
the product’s assembly sequence. Other works focused on
sub-problems such as scheduling human and robot actions
through Petri Nets [5], [15], or cooperative planning at a
symbolic level [16], [17]. These approaches work better
only in a classical static environment. Indeed, they cannot
handle dynamism, uncertainty and the possibility of the user
triggering unforeseen actions as a Human-Aware dynamic
scenario requires and as proposed in our approach.

Nikolakis et al. [18] proposed a hierarchical method
based on multi-criteria decision-making for an offline task
allocation and a dynamic replanning due to unexpected
events. Related works which used multi-criteria decision-
making framework are [19], [20]. In these works, the authors
considered robots and humans as resources. They developed
task allocation approaches capable of handling unexpected
events but not capable of handling specific commands/actions
desired by the user. An unexpected event can be considered
as a generic trigger where different events could correspond
to a generic reaction. A user’s command, instead, is a specific
trigger, i.e., each command corresponds to a specific reaction.
However, this part is crucial because the operator is an impor-
tant subject inside the process, and his ability is fundamental
to improve the process. Our method proposes solving this
gap using the action recognition module connected to the
task planner.

Graph-based approaches are described in [21], [22]. The
modelling of the process takes place via AND/OR graph
that can handle the parallelism of two actions assigned to
two different resources. However, they cannot handle the
order of precedence constraints typical of assembly tasks

1https://www.drapebot.eu/

and how our approach aims to address and resolve. In other
work, instead of using graph-based approaches, the authors
exploit the advantages of the Behaviour Tree (BT) [23],
[24]. In particular, Lamon et al. [24] have combined the BT
approach with a Mixed-Integer Linear Programming (MILP)
based role allocation method that allows individual and
collaborative roles within the same formulation. However,
human uncertainty is not modelled and considered. But, an
intelligent system has to consider human intentions in its
decision-making rather than force the operator to follow a
strict, predefined assembly plan. In our proposed method,
the operator can directly interact with the system and force
the robot to execute some tasks by the action recognition
module. Human intentions are typically modelled through the
Partially Observed Markov Decision Process (POMDP) [25].
Approaches which shared similarities with Cramer et al. [25]
modelled the collaborative task like hierarchical task network
(HTN) [26], [27], [28]. The latter directly employs first-order
logic to enable the robot to estimate its partner’s goals and
anticipate correctly in the presence of human variability and
non-deterministic sensing. Another work related to the HTN
is [29], where the task planner is able to divide the plan into
multiple streams for multiple agents, humans included.

Most of the approaches described above have an implicit
representation of the time. Actions are supposed to be
instantaneous so that the action effects become true when
the action itself is applied and changes the environment or
the situation. Therefore, states and goals are not supposed
to have a temporal extension such that they hold only for
a limited temporal interval, or that they must be achieved
within known temporal bounds. The planners that follow this
approach are temporal planning, and the main feature is that
they synthesize plans by combining causal reasoning with
time and resource reasoning [30], [6].

In [6], Umbrico et al. proposed a timeline-based planner
called PLATINUm with the ability to deal with temporal
uncertainty at the planning and plan execution levels. The
same authors then improved that tool by proposing an evo-
lution of it, called TENANT [31], capable of setting objec-
tives, defining tasks and establishing operational constraints,
despite the inherent complexity required in planning and
robotics. Although these works are evaluated in industrial
applications, these approaches are not able to be adapted or
rescheduled based on real-time observations by the operator.
Indeed, adapting plans on the fly can be difficult, especially
when the original plan heavily relies on strict time constraints
like in these approaches.

Finally, significant advances in Deep Reinforcement
Learning (DRL) have been witnessed in many outstanding
large-scale sequential decision-making problems [10], [32].
Hu et al. in [33] exploited the combination of timed-place
Petri nets with the deep Q-network with GCN to manage the
dynamic scheduling problem of an industrial manufacturing
scenario. In the same application, Kim et al. in [34] pro-
posed the RL approach where intelligent agents evaluate the
priorities of jobs and distribute them through negotiation.



Fig. 2: Example of a plan with composite and primitive
actions.

III. SYSTEM ARCHITECTURE

This section presents the Dynamic Human-Aware Task
Planner framework that handles the entire process and
human-robot planning. Fig. 1 depicts an overview of the
system proposed.

The Task Planner module coordinates the human and
robot activities. It is responsible for creating a continuously
updated plan that serves as a guideline for the workflow and
will be composed of the sequence of actions to achieve the
assigned task. Finally, the Task Planner must manage the
human intentions to adapt the computed task plan to meet
the collaboration needs dynamically or to handle unexpected
situations and use recovery actions to return to a safe state.
A simple example of the plan for a draping process is
shown in Fig. 2 where it is composed of composite action
like Transport that represents the activity to transfer the
carbon fibre ply from a picking table to the mould, and
primitives like Draping and Inspection that represent the
actions performed by the human operator that drapes the
ply into the mould and checks that no defects have formed
during the previous activity.

The second important module is Action Recognition,
which recognises the gestures associated with triggering spe-
cific actions. The associated command is sent to the Central
Node, which is the module that monitors the operation of the
system and sends the commands to the other modules that are
in charge of performing the action in the plan. The Central
Node manages the information the sensors provide in the
workcell. Finally, a state-of-art Motion Planner is involved
in order to generate a collision-free trajectory for the robot.

A. Task Planner

The task planner structure is outlined in Fig. 3 and is
developed following a hierarchical approach consisting of 3
different layers:

• A low layer consisting of Primitive Actions.
• A middle layer consisting of Composite Actions.
• A high layer consisting of the Plan of the entire process.

Each layer has its own distinctive characteristics and a
different level of abstraction with respect to the final task.
In the lower layer, we have the Primitive actions which
represents the activities to be performed (e.g. Move, Draping,
Inspection, etc.). The robot and the human alone could
execute this activity, or both agents are required. A series
of preconditions and effects characterise a primitive action.
The preconditions are verified directly by the primitive itself,
while the effects describe the state changes. When one of the
preconditions is not satisfied, the current state is invalid and
the primitive cannot be sent to execution, i.e. the related
activity cannot be performed. Therefore, the primitive itself
notifies the Central Node that the state is invalid. The central

Fig. 3: Hierarchical structure of the Task Planner: the primi-
tive actions are in the lower layer, the composite actions are
in the middle layer and the final plan is in the highest layer.

node triggers the related recovery behaviour in order to return
to a valid state. A recovery behaviour is a specific and simple
action, strictly related to the primitive itself, that is respon-
sible for returning the system to a valid state, thus allowing
the process to continue while limiting external intervention
to a minimum. For example, if a robot’s gripper fails to
grasp an object, recovery could be deactivating the gripper
and retrying the grasping operation, i.e., reverting the state,
performing the object detection again and re-evaluating the
precondition primitives for the grasp action. Another more
complex example could be the Piece-Detection primitive,
which involves localizing the object on the pick-up table
and providing a suitable grasping point. If the algorithm does
not find the desired object, two recovery behaviours can be
activated: the first starts a second scan of the table by moving
the camera in a slightly different position; the second, if the
process allows (i.e. without violating precedence constraints)
searches for the next object to pick-up. The action associated
to recovery behaviour is defined as a primitive, with its
precondition (if needed) and effects. After the intervention
of a recovery behaviour, it is verified whether the current
plan is still valid and whether the preconditions of that
action are now valid. If this happens, the primitive is re-
executed, otherwise a re-planning is required. A set of
specific configuration files defines the primitives and their
structure.

In the middle layer, we have the Composite actions defined
as a logical sequence of primitive actions. The composite
has both preconditions and effects, corresponding to the first
and last primitives, respectively. Similar to the primitives, the
composite has a set of recovery behaviours triggered when
a transition between one primitive and the next fails. The
sequence of the primitives is defined in an external config-
uration by an expert operator who has to collaborate with
the robot in the workcell. The definition of primitives and
composite actions are provided in input to the Task Planner
as shown in Fig. 1. The symbolic language used to model the
primitives is the PDDL [35] because its action is precisely
defined by a set of parameters, preconditions, and effects
required by the Task Planner. Fig. 4 depicts an example of
the Transport composite action which includes the primitives



Fig. 4: Example of the Transport Composite Action (CA) as
the sequence of Primitive Actions (PA).

Move, Piece-Detection, Activation and Deactivation of the
gripper.

Finally, in the highest layer, we have the Plan for the
entire process. By construction, this is the most abstract layer
and where the definitions of composites and primitives are
used together with information from the assembly process,
environment and human operator to create the process plan.
Assembly applications contain precedence constraints to
manage and define the order in which the main components
should be mounted. For these reasons, it was decided to use
a Direct Acyclic Graph (DAG) approach with weighted arcs
to represent all the possible alternative plans. In particular,
each node of the graph represents an action (primitive or
composite), while each arc represents the dependencies that
must be fulfilled. For example, some objects must be placed
before others in assembly tasks. Therefore, during the build-
ing of the graph, the task planner has to take into account that
aspect. For example, as shown in Fig. 5, the Action 5 must be
performed only after Action 3 and Action 4. In addition, each
arc has an associated cost representing the effort of the robot
and the user respectively in performing the action associated
with the transition between the two nodes. The goal is to
create a plan that minimises the user’s effort and maximises
the robot’s effort by exploiting the possibility of having
the robot perform some actions while the user performs
others in the same collaborative workcell. Therefore, using
the DAG (Alg1 - line 1) it is possible to find a topological
ordering which describes the sequence of actions to complete
the process (Alg1 - line 2). However, a DAG may contain
more than one valid topological ordering. For this reason,
the Depth-first search (DFS) algorithm was used for the
topological search and optimised the cost function. The cost
function used to calculate effort is the same for user and
robot and it is the sum of the weights on the arcs in the
DAG in Fig. 5. The mathematical formulation of the cost
function follows:

C(w) =
∑
u

wi,u +
∑
ru

wi,ru −
∑
u

wi,r (1)

where wi,j represents the weight of ith arc and j repre-
sents to which agent the weight is associated, whether to
the user (u), the robot (r) or both (ru) when that action
is to be performed by the two agents together. In order to
optimize the cost function and obtain the plan that minimizes
the user’s effort, the argminw C(w) is taken (Alg1 - line 3).
In this way, a plan can be found to complete the process and
described by the sequence of actions to be performed by the
robot and user.

B. Human Action Recognition

The Human Action Recognition module monitors human
activities during the collaboration, such as phases of the

Fig. 5: Plan described by the Direct Acyclic Graph (DAG)
where the action is represented by the node and the effort
associated by the arc’s weight.

Algorithm 1 Task Planner
Input: PA Primitive Action set, CA Composite Action set, Pd

Process description, state current state, a action failed, h
human command

Output: P Plan
1: G ← buildDAG(PA,CA,Pd, state, a, h)
2: < T P, C(w) >← findAllTopologicalOrdering(G)
3: P ← argminw C(w) ∈< T P, C(w) >
4: return P

Algorithm 2 Central Node
Input: PA Primitive Action set, CA Composite Action set, Pd

Process description, H human command set
1: P ← TaskP lanner(PA,CA,Pd)
2: for all a ∈ P do
3: valid← evaluatePrecondition(a)
4: if valid then
5: state← Execute(a)
6: else
7: (state, valid)← RecoveryBehaviour(a)
8: if valid then
9: go to 3

10: else
11: P ← TaskP lanner(PA,CA,Pd, state, a, null)
12: end if
13: end if
14: h← HumanActionRecognition(), h ∈H
15: if h then
16: P ← TaskP lanner(PA,CA,Pd, state, null, h)
17: end if
18: end for

process (e.g., draping) or particular gestures to provide
commands to the robot (e.g., request a new ply). Such
information allows the task planner to be constantly updated
on the current activities of the human operator: the task
planner can periodically check whether the human is still
engaged in particular tasks (e.g., draping) or whether through
the use of gestures it is requesting specific actions from the
robot that require the generation of a new task plan.

The human action recognition module is based on a
previous work [36], where a graph convolutional neural
network was proposed to recognize common human actions
and gestures which arise in a collaborative manufacturing
scenario. Such network takes as input a sequence of human
3D poses (i.e., skeletons) and tries to classify human move-
ments according to a set of actions of interest by analyzing
both spatial and temporal information.

In this work, human poses are provided by the state-of-



Fig. 6: Example of replanning due to user command.

the-art monocular 3D pose estimator MeTRAbs [37]. Such
estimator outputs human poses composed of 19 keypoints
describing the main body joints (e.g., torso, arms, legs).

Differently from [36], where actions were recognized
using an ensemble of various models specialized for different
body parts (e.g., body and hands), in this work we focused
only on the body, as during a real manufacturing application
the hands are thickly occluded and difficult to estimate
accurately.

C. Central Node

The Central Node executes the plan by activating the cor-
rect primitives and supervising their execution. In addition,
this module is always aware of the state of the workcell
through the sensors present in the scene, e.g. a camera
network positioned around the robot workcell, laser scanners,
etc. A second purpose of the central node is to handle invalid
state situations one may find oneself in during the execution
of the process plan. When a primitive precondition is not
satisfied (Alg2 - line 3), it is notified that the state is invalid
and the central node will trigger the corresponding recovery
behaviour in order to return to a valid state (Alg2 - line
7). When this happens, the primitive is asked to re-verify
whether the preconditions are satisfied (Alg2 - line 9) in
order to verify whether the current plan is still valid or if a
re-planning is necessary (Alg2 - line 11). In the last case, the
central node notified the task planner module that the current
plan was unfeasible and a new plan was required. A similar
situation occurs when the user wants to make the robot
perform a task not foreseen in the plan (Alg2 - line 14). In
this case, through the Human Action Recognition system, the
user executes a specific command associated with a specific
action to be done, be it a primitive or a composite. For
example, as depicted in Fig. 6, when the Inspection action
was finished, the user noticed some defects and decided to
take a picture of the area where the defects were present. In
order to perform this action, which was not included in the
original plan, he performed the specific gesture associated
with the composite TakePicture. The central node receives
this information and sends it to the Task Planner module
which is in charge of creating a new plan where the requested
action is the first action to be performed. The requested
action is treated as a precedence constraint to add to the
DAG.

IV. EXPERIMENTS

The Dynamic Human-Aware Task Planner developed in
this work was tested in a specific assembly scenario which
is the draping of fibre carbon plies. First, we described the
draping process and the actions involved, then we evaluated

the performance of the Task Planner analyzing the computa-
tional time spent to create a suitable plan, considering also
the replanning phase, and the performance of the Human
Action Recognition system. Finally, a qualitative analysis in
a real scenario is provided.

A. Case Study

Draping is a complex industrial operation that requires
an advanced skilled user who is not only responsible for
draping onto the mould but also for a series of activities
such as inspecting the part, noting by text and/or photos of
certain areas if they have slight defects, and checking that
the orientation of the fibres is correct. The transport of a
ply could be executed by the operator or robot alone, or it
could be a collaborative transport where human and robot
are involved. Thus, the coordination of the activities, like
the robot’s motion, activation/deactivation of the gripper to
perform the pick and place and the detection of the piece in
the picking table is crucial.

In addition, the operator could use a gesture to trigger
an action which it was not in the original plan (Fig. 6) or
to notify the central node that the current action has been
completed and to move on to the next one. An example
of this situation is when the operator has finished draping
the ply and wants to notify the central node so that it can
perform the next action. This is a simple and intuitive way
for the user to interact with the robots and provide his/her
experience into the system. Therefore, analyzing the process
and the activities to be done, a set of gestures of interest
has been defined based on the possible human interactions
which can arise during the process. In particular, a set of 6
human actions has been considered: Detection, Inspection,
Transport, Draping, Drape Next and Take Picture.

As described in the previous paragraph, a configuration file
is used to represent the precedence constraints and define
the order in which the plies are draped. Also, the sets of
primitives, composite and gesture are defined in order to
perform the entire draping process. Table I provides an
overview of the actions used to evaluate the Task Planner,
while a detailed list of the human actions of interest and their
description is provided in Table II.

Action name Description

Move Primitive that represents the motion of the robot and/or the operator
Gripper Activation Primitive that represents the activation of the gripper to pick up the ply

Gripper Deactivation Primitive that represents the deactivation of the gripper to place the ply
Piece Detection Primitive that represents the detection of the plies on the table

Draping Primitive that represents the draping of the ply onto the mould by the operator
Transport Composite that represents the transport of the ply from the picking table to the mould

TakePicture Composite that represents the saving of an image of a certain mould area
Annotation Composite that represents the saving of information by the user operator
Inspection Composite that represents the inspection of the draping plies onto the mould

TABLE I: Overview of actions used to evaluate the Task
Planner.

B. Task Planner Evaluation

The Task Planner was evaluated through the entire draping
process using the actions shown in Table I and 20 inde-
pendent process trials were performed. For each trial, the
plan considered the draping of 5 plies. As mentioned above,



Action name Meaning Description

Detection Trigger the Object Detection Clap with stretched arms above head
Inspection Stop current robot operation Raise one hand with a stretched arm
Transport Collaborative transport Move while holding one side of the ply
Draping Manual draping Drape the ply on the mould
Drape Next Require next ply Move the right arm bend 90°
Take Picture Take a photo of the ply status Point at the desired location to be framed

TABLE II: Set of actions of interest considered for evaluating
the human action recognition module in the proposed case
study.

Trial First Plan Time [ms] Replanning Time [ms]

1 3.36 3.16
2 3.58 4.08
3 3.79 5.9
4 3.81 4.1
5 2.95 6.79
6 2.14 5.72
7 2.5 5.95
8 2.4 3.43
9 3.52 3.13
10 3.04 3.5
11 2.42 3.49
12 3.86 5.09
13 3.15 3.81
14 3.62 4.18
15 3.35 5.86
16 2.32 3.67
17 2.42 4.37
18 2.61 6.12
19 3.76 6.52
20 2.70 5.56

Average 3.065 4.7215

Validity 19/20 19/20

TABLE III: Time for the first plan (left) and average time
for replanning (right) in ms.

the computational time is used to evaluate the performance
and the interaction with the user was done by the Human
Action Recognition system. Therefore, when the Central
Node received the gesture it would either perform the next
action in the plan or send a message to the Task Planner
that a re-planning was necessary. Task Planner and Central
Node were running in a Lenovo ThinkPad with 11th Intel
Core i7 processor and 16GB of RAM. The results obtained
are summarized in Table III where the time is expressed in
milliseconds (ms).

As shown in Table III, the planner demonstrated high
efficiency in generating the first plan, with an average
computational time of 3.065 ms. However, when the planner
had to replan in response to a user’s command, it was slightly
slower, with an average computational time of 4.72 ms. The
minimum and maximum computational times observed were
2.14 ms and 3.86 ms for the first plan, and 3.13 ms and 6.79
ms for the replanning phase, respectively. All the values in
the replanning column are the average of all replanning that
happened during the trial. In fact, in this way, it is possible
to consider when the rescheduling has taken place. If you
replan at the beginning of the process, there are a lot of tasks

Fig. 7: Evaluation of the action and gesture recognition
performance on the test set as confusion matrix.

afterwards, so it takes a lot of time; vice versa if you replan
close to the end of the process, it will be faster because there
are fewer tasks left to complete the process. Out of all the
trials conducted, there was only one instance (Trial 13) where
the Task Planner provided an invalid plan both as the first
plan and during the replanning phase. The computational
time was recorded in this case, and the trial was aborted.
These findings highlight the efficiency of the planner in
generating initial plans, with most plans being valid and
feasible. The slight increase in computational time during
the replanning phase suggests that the process of revising
and generating a new plan takes slightly more time than
the initial planning stage. Additionally, the occurrence of an
invalid plan during replanning emphasizes the importance of
thorough testing and verification to ensure the reliability and
safety of the system.

C. Human Action Recognition Evaluation

For evaluating the Human Action Recognition module, a
dataset has been collected for 5 different subjects, each one
performing five times all the human actions considered in
Table II. In order to improve the reliability of the action
classifier, also a general “unknown” class has been consid-
ered in the dataset acquisition to learn better to distinguish
the movements associated with the gesture from movements
related to general movements of the worker within the
workcell not related to the overall process as walking and
standing. We considered 10 sequences for each subject for
evaluating performance on the “unknown” gesture since it
includes a larger variability of possible movements.

The action recognition module is trained on the collected
dataset, using the sequence relative to 4 subjects. The se-
quences related to the fifth subject are reserved as a test
set, on which the action recognition classifier is evaluated in
terms of accuracy. This allows to evaluate the action classifier
on a set of data not used to train the model, assessing
the classifier’s ability to generalize on novel data. The total
number of test sequences is 40: five sequences for each of



(a) (b) (c)
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Fig. 8: Evaluation during a draping task: the robot detects the required ply (a) and moves to the “pick” position (b); the
operator waits until the robot reaches the final position on the mould (c) and then starts the manual draping phase (d); when
draping is finished, the worker requests a new ply using a Drape Next gesture (e); while the robot starts moving towards a
new ply, the human raise the right arm to trigger a manual “inspection” causing a replanning (f).

the six human actions defined in Table II, and ten sequences
involving common movements annotated as “unknown”.

The action recognition module has been evaluated in
terms of Top1 and Top3 accuracy. The former represents
the percentage of correctly predicted gestures in the test set.
At the same time, the Top3 accuracy is the percentage of
actions whose correct prediction falls in the three highest
softmax scores estimated by the network. The performance
achieved are Top1=90.00% and Top3=97.50%. As shown in
the confusion matrix, Fig. 7, the classifier performs well in
terms of accuracy on the considered test set since most of
the actions of the fifth subject are correctly recognized.

D. Experimental Validation

The proposed framework has been validated in a real
industrial scenario, targeting a collaborative draping task
shown in Figure 8. In particular, the human operator and the
robot work together to drape a series of plies on a mould: the
robot provides the material transport and accurate placement
on the mould (Figure 8c), while the human operator performs
the actions that require high manual dexterity, such as
manually draping the material over the mould (Figure 8d).
At any time, the user can request particular actions from the
robot by means of gestures, such as a request for a new
ply (Figure 8e) or a request to stop the current operation to
allow the operator to manually inspect the draping quality
(Figure 8f). The proposed framework is able to monitor
the worker’s activity and handle sudden requests from the
operator. For example, in the experimental validation shown
in Figure 8, at the end of the manual draping, the operator

makes a Drape Next gesture, thus triggering the task planner
to generate a plan to move the robot towards a new ply;
immediately afterwards, when the robot starts to move, the
user makes a new Inspection gesture forcing the task planner
to delete the previous plan and generate a new one.

V. CONCLUSIONS

In this paper, we proposed a Human-Aware Task Planner
for Human-Robot Collaborative industrial applications. The
advantages of this approach are the ability to create a plan
starting from the description of the process and the actions
in order to share that activities both from humans and
robots. In addition, it is able to handle user interaction
through the dynamic rescheduling of the plan following
user interruptions or to handle unexpected events. The user
commands are handled by an intelligent Human Action
Recognition module based on Deep Learning technique.
Another main contribution is the ability of the planner to
create actions starting from primitives. The framework has
been validated in an industrial collaborative scenario derived
from the DrapeBot European research project. The results
obtained demonstrate the applicability and effectiveness of
the proposed approach. In future works, we plan to integrate
the Task Planner with an ergonomic Motion Planner in order
to evaluate the complete Task and Motion Planner (TAMP)
application in a dynamic industrial scenario where one of
the collaborative activities between robot and human is the
collaborative transport of plies.
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