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Abstract— Human-Robot collaborative transportation is a
promising technology that combines the strength of humans and
robots. The most common approaches rely on methodologies
that exploit force-sensing. However, the drawbacks are multiple.
First, the magnitude of force applied might be limited to avoid
damages. Then, force measurements might be unidirectional
according to the material properties; e.g., compression forces
are not measurable for fabrics. This paper proposes an ap-
proach based on the estimation of the deformation state of
the manipulated object from depth images. Specifically, the
segmented depth image of the manipulated object are fed to
a Convolutional Neural Network (CNN) model to estimate
the current deformation status. Compared with the desired
deformation, the current deformation status is used to generate
the robot’s twist command. The methodology is proved in
a mobile robot application, where carbon-fiber fabrics are
transported. A comparison with the state-of-the-art is reported
proving that the proposed method is more accurate and more
repeatable.

I. INTRODUCTION

Human-robot collaborative transportation is increasingly
investigated for industrial applications, mainly when ap-
plied to large objects requiring multiple people to handle.
However, multiple challenges need to be solved still. First,
the robot should be able to infer the human objective [1],
and based on that, the human and robot should be able
to switch the leader and follower roles during the physical
interaction [2]. Second, the robot should minimize human
effort while ensuring safety [3]. Then, human control action
in physical human-robot interaction can be approximated as a
delayed linear model because of the human reaction time [4].
Such a reaction time varies significantly between people and,
if not addressed, can even lead to instability.

A peculiar case of human-robot collaborative transport is
when the manipulated object is deformable, such as fabric
or cables. The robot should avoid excessive deformation of
the manipulated material and aid the human simultaneously.
Standard control techniques, based on sensing the force
applied by the human, e.g., impedance control, struggle due
to the low forces that can be applied before damaging the
object. Thus, control strategies based on visual feedback of
the comanipulated object are viable alternatives.

Building on our previous work [5], we propose a vision-
based strategy to perform collaborative transportation of
deformable objects with an industrial mobile manipulator
(IMM). We use an eye-in-hand RGB-D camera to capture
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Fig. 1: Developed setup for collaborative transportation of
deformable objects. A sheet of carbon fiber fabric is manip-
ulated by a human and a mobile robot. An RGB-D camera
is used to sense the deformation of the carbon fiber sheet.

the depth image of the manipulated object. The segmented
image of the manipulated object is fed to a Convolutional
Neural Network (CNN) to estimate its current deformation
status, defined as the current human-robot relative distance.
The difference between the current deformation status and a
predefined rest configuration status is finally converted into
a twist command and fed to the robotic controller.

A. Related Work

The manipulation of deformable objects has been investi-
gated [6], [7] focusing on two main classes of deformable
objects: cables [8], [9] and cloth-like [10], [11]. However,
a few works study the problem of the collaborative human-
robot manipulation of such objects, and they typically focus
on cloth folding [12], [13]. One of the main challenges is
tracking the deformable object and estimating its current
shape, in other words, its deformation. Two main approaches
have been developed to estimate the material deformation
in human-robot manipulation: direct or indirect via motion
capture of the human. The direct approach uses visual fea-
tures that are subsequently converted into robot commands.
However, multiple visual features have been developed in the
literature; therefore, a standardized control architecture has
yet to be established. Indeed in [14], fabric folds combined
with force measurements are used. In [15], [16], the authors
use Histograms of Oriented Wrinkles (HOWs) computed by
applying Gabor filters to RGB images. The indirect approach
instead tracks the position of the human grasping points on
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(a) (b)

Fig. 2: Problem formulation of the human-robot collaborative transportation problem. a) Shows the top view highlighting
the definition of the human grasping point Hgp. b) Shows a lateral view highlighting the parameters that compose TH

R ,
TH

R,des, and ∆T. For the sake of simplicity, rotations have been neglected.

the material via a motion capture system based either on IMU
sensors [17], combined with force/torque measurement for
stiffer materials, or a camera [18], [19]. However, the general
assumption is that the contact point between the human and
the manipulated material is known a priori or detectable.

A different approach is in [20]. A motion tracker detects
handcrafted coded gestures that, combined with torque force
measures, are used directly to compute robot end effector
speed without estimating the material deformation.

Deep Neural Networks have recently been used as feature
extractors via autoencoder networks [21], [22], [23], and
the robot movement is planned according to such features.
However, those methods have yet to be applied to human-
robot manipulation.

Finally, only a few works study the human-robot collab-
orative transportation with mobile manipulators [20], [17],
while many works investigate non-collaborative scenarios
with multiple mobile manipulators [24], [25].

Collaborative transportation has been investigated mostly
applied to rigid objects, such as in [26], [27]. The general
approach is based on force sensing combined with impedance
or admittance control. However, force measurements with
deformable materials like fabrics are unreliable due to i)
low forces sustained by the object before damage; ii) force
measurement might be unidirectional, specifically only trac-
tion forces; iii) translation-rotation ambiguity. Thus such
control architecture cannot be applied to deformable objects
without the aid of vision-based deformation estimation such
as in [17].

B. Contribution

The approach proposed in this paper relies on learn-
ing a deformation model of the manipulated objects from
depth images and converting it into robot twist commands.
Compared with methods in the literature, it has multiple
advantages. Firstly, the deformation estimation is direct yet
not based on handcrafted visual features; instead, features are

learned and can be general with a sufficiently large dataset.
Furthermore, indirect deformation estimation based on a
motion capture system has various drawbacks, with IMU-
based skeleton tracking being affected by drift, body sensors
needing to be worn by the operator with uncomfortable
straps or specific suits, and camera-based skeleton tracking
having a limited field of vision. Vision-based methods are
also generally computationally expensive, requiring high-end
hardware to reach 30 Hz (standard RGB-D cameras’ frame
rate upper limit). Second, the proposed control architecture
is very straightforward compared to other works using a
combination of force and vision-based control architectures.

II. METHOD

A. Problem formulation

The problem of human-robot collaborative manipulation of
deformable materials is composed of two agents handling the
deformable material simultaneously, as shown in Figure 1.
One agent is the human that leads the activity, and the second
one is the robot that should follow the human movement. The
objective is to manipulate the desired object while minimiz-
ing the deformations from a rest configuration that guarantees
no damage to the material. The human movements during the
collaborative transport deform the material; thus, the robot
compensating for the deformations follows the human.

The problem of collaborative transportation can be decom-
posed into two separate problems. First is the definition and
estimation of the deformation status. Second is computing
the robot commands to minimize the deformation from the
rest desired position.

We briefly report the definition of deformation status first
proposed in [5] and expanded in [28]. Let us consider a
deformable material handled by two agents, a human, and
a robot. Denote hr and hl as the human’s right and left
hand grasping positions and Rcur as the robot’s current
grasping point. The object shape can be described as the
tuple of relative roto-translations between the robot grasping
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Fig. 3: Architecture for the collaborative transportation problem. After preprocessing, the depth image acquired is segmented
to obtain the segmented depth image of the comanipulated object. The segmented depth is fed to a deformation model that
estimates the current deformation status as defined in Section II-A. The current delta deformation between the estimated
and desired setpoint is converted into a twist command fed to the robot controllers that output the IMM joints’ speed.

position and the human holding positions, except for the local
deformation around the hands. This model fully describes the
problem of collaborative shape servoing but is unnecessarily
accurate for the objective of collaborative transportation. It
also models the deformation in the corners depending on
where the human grasps the object.

We also assume that the human does not deform the
object between the hands, considering the material segment
between the two hand-grasping points as rigid, for example,
spreading the arms. Such movements do not have a purpose
in a collaborative transportation application; therefore, we
assume that if performed are involuntary and neglectable.
Given these assumptions, we define an arbitrary point on the
object between the hands invariant to the different grasping
positions. The relative roto-translations between the robot
grasping position and this point is a robust proxy for the
object deformation, except for the local deformation around
the hands and the geometry of the corners, which are
irrelevant in a collaborative transportation scenario. Finally,
given the frame reference in Figure 2b, we also assume that
the x-axis rotation is always zero since it causes only local
deformations of the object around the robot grasping point.

Referring to Figure 2a, Hgp is the human grasping point
frame, TH

R and TH
R,des are the actual roto-translation matrix

between the robot’s current pose Rcur or desired Rdes

and Hgp. TH
R and TH

R,des are respectively described by
the parameters dHR and dHR,des, three translations and three
rotations following the X-Y-Z extrinsic Euler conventions.

Given this formulation, the problem consists of (i) impos-
ing the target TH

R,des and (ii) estimating TH
R the collaborative

transportation. The robot should be controlled based on such
estimations to minimize the distance from the target’s desired
pose, i.e., ∆T → I , where I is the identity matrix. Given the
formulation above, we define the robot controller as follows:

q̇ = f(∆T) ∆T −→ I (1)

where q̇ denotes the robot joint command speed.

B. Proposed solution

We solve the collaborative transportation with the architec-
ture shown in Figure 3. An RGB-D camera is mounted on the
robot end effector to acquire depth images of the manipulated
object; see Figure 1. The background and the human partner
in the depth images are segmented with a specifically trained
segmentation model, implemented using Unet [29] with the
encoder-decoder pre-trained on the ImageNet dataset. The
segmented depth image of the object is then fed to the de-
formation model, based on DenseNet121 [30] pretrained on
ImageNet, which estimates roto-translation TH

R parameters.
Both the segmentation and deformation models are trained
on a single dataset specifically acquired of deformed plies.
Subsequently, the delta deformation between the deforma-
tion setpoint TH

R,des and the estimated deformation TH
R is

converted into a twist command which is then handled by
the robot control algorithm.

C. Datasets acquisition

As described above, we developed a procedure to acquire
a single dataset to train the deformation and segmentation
models. The dataset acquisition is divided into two steps.
First, the deformed object dataset is acquired, called the
deformation dataset. Second, the dataset for the segmentation
model, called the segmentation dataset, is generated starting
from the deformation dataset. This approach allows for min-
imizing the required time to acquire datasets and minimizing
the necessary human intervention as much as possible.

The deformation dataset should comprise many depth
images of the deformed material with different human-
robot relative distances and human grasping positions. We
substituted the human with a frame that holds the deformable
material, as in Figure 4, to avoid inaccuracies introduced by
a human operator. Then rather than deforming the object
moving the human or frame, the robot moves relative to the
frame whose position is estimated through a pair of fiducial
markers AprilTags. At the same time, the frame allows
higher accuracy and repeatability, simulating different human
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Fig. 4: The setup to acquire the dataset of a carbon fiber
object. It comprises an RGB-D camera, Azure Kinect, an
IMM composed of a Universal Robot UR10 and a custom-
made mobile platform, an aluminum frame to mimic the
human, and a pair of fiducial markers, Apriltags, to localize
the frame.

grasping positions on the material, and minimizes human
intervention. Finally, at each robot position, a set of RGB-D
images are taken to account for the camera’s noisy output and
are autonomously labeled with TH

R parameters described in
Section II-A. The deformation dataset acquisition is almost
fully autonomous since the only human intervention required
is to modify the grasping position on the frame.

Finally, the deformation estimation model should be ag-
nostic to anything from the object shape, such as the back-
ground or human partner. Thus, the depth images are seg-
mented with a fully autonomous segmentation routine. The
segmentation routine depicted in Figure 5 uses thresholding
of the depth, static mask, and a mask based on Apriltags’
position in the RGB image. The Apriltags define a rectangu-
lar box in the depth image, and all pixels outside are set to
zero. Each image is cropped and resized to the resolution of
224 × 224. During the deformation model training, random
translation and random rotations are applied to the segmented
depth image as a form of data augmentation.

Such a segmentation routine cannot be unlikely applied in
collaborative transportation since the operator must wear a
pair of fiducial markers. Therefore, the segmentation model
should be able to segment the object independently by the
background and the human operator. Thus, instead of acquir-
ing and labeling a new dataset sufficiently large to generalize
over different backgrounds and humans, we generated a
synthetic dataset starting from the segmented depth images
of the deformation dataset. In detail, the synthetic dataset
is created by combining a minimal dataset of human-depth
images, 100 images per 5 random people, from the same
point of view, in random positions not overlapping with
the segmented object, as shown in Figure 5. Finally, fake
backgrounds with the depth value thresholded are added.

D. Mobile manipulator control

Consider (1). The mobile manipulator controller should
compute robot joints speed q̇ taking as input the deformation
error, i.e., ∆T . First, we compute twist commands from
deformation, as in Figure 3, then we convert such commands
into joint speed commands.

The deformation module outputs the parameters describing
TH

R denoted as dHR ∈ R6, as shown in Section II-B.
Following the same rotation convention, we compute TH

R,des

parameters, dHR,des. The delta deformation ∆d turns in:

∆d = dHR − dHR,des. (2)

Twist command, denoted as ẋtool, is computed with the same
conventions with a simple gain K ∈ R6.

ẋtool = K ⊙∆d (3)

Based on the formulation in Section II-A, ∆T is defined in
the frame Rcur, therefore also ẋtool, which is then converted
to the IMM base frame Hmr, and referred to as ẋ for the
sake of simplicity.

Considering an n degrees of freedom IMM, with joint
velocity q̇ ∈ Rn, formed by the robotic arm joint velocities
and by the generalized velocities of the AMR (Autonomous
Mobile Robot), and task space velocity ẋ ∈ Rm, their
nominal relation follows

q̇ = J(q)
+
ẋ (4)

where J(q)
+ ∈ Rn∗m is the pseudo-inverse of the task

Jacobian matrix referred to the IMM base Hmr.
The task Jacobian J(q) is formed by the robotic arm

Jacobian J(q)R, referred to the Hmr frame, followed by
the trivial AMR Jacobian as

J(q)R
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

 (5)

Being the system redundancy (m < n), we enforce additional
constraints to keep the robotic arm as close as possible to a
resting given position qrest during the control, as:

q̇err = Kp(qrest − q) (6)

q̇ = J(q)
+
ẋ+ (I − J(q)

+
J(q))q̇err (7)

and Kp is a proportional gain that affects the null move-
ment’s magnitude. The AMR compensates for displacements
and aids the robotic arm in keeping joint positions close to
the qrest, preventing the reaching of joint limits.

III. EXPERIMENTS AND RESULTS

A. Experimental setup

The experimental setup shown in Figure 1 comprises a
Universal Robot UR10 mounted on top of a custom-made
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Fig. 5: Developed pipeline to generate data for training the segmentation and deformation estimation models. The segmented
depth is generated by combining masks, thresholding, and cropping. The segmented depth images are combined with humans’
depth images to train the segmentation model to segment the object from humans not included in the dataset.

omnidirectional mobile platform and an Azure Kinect RGB-
D camera. A roughly rectangular carbon fiber ply with
size 130 × 38 [cm] was used. The acquired deformation
dataset comprises 134550 depth images of the ply deformed
along the three translations and the rotation along the z-
axis. Five images are obtained for each robot pose, i.e.,
human-robot relative distance, and the dataset includes two
different human grasping positions. Given the desired resting
deformation of [0, 1.05, 0, 0] the studied deformation range
was:

• −0.12 ≤ x ≤ 0.12 [m],
• −0.255 ≤ y ≤ 0.255 [m],
• −0.12 ≤ z ≤ 0.12 [m],
• −30◦ ≤ yaw ≤ 30◦.

The maximum resolution of the deformation range for trans-
lations is 3 [cm], and for rotations is 6◦. The total required
time for the dataset acquisition was about 3.5 hours. The
segmentation and the deformation models are deployed on
a laptop with Intel Core i7-7700HQ 2.8 GHz CPU, 16 GB
RAM, and NVIDIA GeForce GTX 1050 running Ubuntu
20.04. The deformation estimation routine, including prepro-
cessing segmentation and estimation, runs approximately at
25 Hz, which is close to the hardware bottleneck of the Azure
Kinect frame rate. Mobile platform control and manipulator
control are deployed on an Intel NUC 10. All software has
been developed within the ROS2 framework.

B. Experiments

This Section reports the results of two sets of tests. The
first was designed to estimate the performance of our model’s
observational error. The second was designed to demonstrate

that the approach is independent of the human operator and
that the human-robot interaction is natural.

1) Observational error: The standard approach in the
literature for estimating material deformation in human-robot
collaborative transportation relies on tracking the hands’
position with motion capture techniques. Among the others,
[18] uses a vision-based skeletal tracker for the hands’
position and a physics simulator to reconstruct the 3D shape.
The simulator design and implementation are relevant for
performance achievement in such a family of methodologies,
and they change from one use case to another. A fair
comparison of such methods with our method is not trivial
since implementing the simulator may bias the evaluation.

This set of experiments compares our method with ad hoc
method we deployed that integrates a motion tracker as the
source of input data. Specifically, such a method consists of

1) estimating the deformation status defined in Section II-
A using the hand’s key points from the official skeleton
tracker software provided by the Azure depth camera
used in the experiments.

2) The segment connecting the two hand key points is
computed, and ∆T is computed between the robot
grasping point and the middle point of such segment.

This approach provides a fair comparison since, as in [18],
the same input data are used and the rest is deterministic.
Therefore no other source of error is introduced except for
the input data.

We exploited the setup previously used for the dataset
acquisition to apply ground truth known deformations to the
object. The difference with the dataset setup acquisition is
that while the frame holds the ply, the human pretends to
hold it without applying further deformations. Specifically,
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Fig. 6: Comparison of the observational error between our and skeletal tracking methods. Top left estimation error on the
x-axis. Top right estimation error on the y-axis. Bottom left estimation error on the z-axis. Bottom right estimation error
on the z-axis rotation.

the frame pose is acquired via the Apriltags; subsequently, a
known deformation is applied, moving the robot to a known
relative pose that will be used as ground truth.

Both methods are tested on ten random robot poses, and
for each pose, the deformation is estimated ten times; results
are shown in Figure 6 as boxplots.

The accuracy of skeletal tracking is generally lower ac-
cording to the mean estimation error. This depends on
the fact that the detected hand key points are placed in
the palm’s center, not precisely where the ply is grasped.
Without a specific calibration, it is impossible to know a
priori the distance between the key points and the grasping
point. It can be noticed that even the repeatability of the
measurement, described by the interquartile range, is far
worse for the skeletal tracking approach. Indeed the skeletal
tracking algorithm produces noisy estimations of the key
points, particularly on the edge of the depth image. The error
on rotation z is particularly affected. Indeed the ply is pretty
tight, and the rotation is computed as the orientation of the
segment connecting the hands’ key points that, in this case,
is not particularly long. Thus a little noise from the hand’s
key points position can lead to high noise in the estimated
rotations. Finally, the skeletal tracker estimation was at a
lower rate of approximately 20 Hz.

2) Collaborative transportation: Two human operators,
not involved in the human-depth images dataset, were re-
quired to perform arbitrary movements in an arbitrary order.
The only instructions provided to the operators are: i) the
mobile manipulator will follow the human compensating
deviations from a predefined deformation status; ii) the
mobile manipulator will also try to keep the robotic arm
close to a rest configuration. Both the predefined deformation
status and the robotic arm’s rest configuration were known
to the human operators. The video of the experiments is

available at the following link: https://doi.org/10.
5281/zenodo.7795589.

First, the segmentation model proved not to overfit the
small number of individuals in the human depth image
dataset and was not affected by multiple people in the
background and different types of backgrounds. Second,
both operators could perform the collaborative transportation
naturally without being hindered by the mobile manipulator.

IV. CONCLUSIONS

This work presented a data-driven vision-based approach
to human-robot collaborative transportation of deformable
objects combined with the usage of a mobile manipulator.
The proposed approach estimates the deformation status
of the comanipulated deformable object via a deformation
model based on CNN that takes as input the segmented
depth images of it. Depth images are obtained from an
RGB-D camera mounted on the robot end effector pointed
toward the comanipulated object and subsequently are seg-
mented with an encoder-decoder segmentation model. Both
the deformation and the segmentation models are trained
on a single dataset whose described acquisition procedure
is designed to minimize human intervention. The estimated
object deformation is compared with a predefined rest de-
formation. The delta deformation is first converted into
robot twist commands and subsequently converted into joint
speed commands considering the system task redundancy.
The proposed approach is first compared with the technique
for collaborative transportation commonly used in literature
based on skeletal tracking. Our approach proved to deliver
more reliable measurements in terms of both accuracy and
repeatability. Finally, a real case of collaborative transporta-
tion was tested with two human operators. The proposed
method proved to generalize well, and the operators that
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had received minimal instruction and no specific training
achieved a natural collaboration with the mobile manipulator.

The main drawback of the approach is that a specific
dataset for every co-manipulated object, based on shape and
mechanical properties, needs to be acquired. Even though
the routine is almost fully autonomous, it is still a time-
consuming activity, highly limiting its applicability. In future
works, the authors plan to use synthetic datasets for training.
Furthermore, we will train multiple deformation models
concurrently, one for each studied object, using a common
CNN backbone to learn more common and general features.
Subsequently, applying transfer learning to new comanipu-
lated objects by retraining only the last fully connected layers
should require a much lower amount of data.

ACKNOWLEDGEMENT

This work is partially supported by the European Union’s
Horizon 2020 research and innovation program under grant
agreement No 101006732, ”DrapeBot – A European Project
developing collaborative draping of carbon fiber parts.”

REFERENCES

[1] P. Franceschi, N. Pedrocchi, and M. Beschi, “Inverse optimal control
for the identification of human objective: a preparatory study for
physical human-robot interaction,” in 2022 IEEE 27th International
Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE, 2022, pp. 1–6.

[2] ——, “Adaptive impedance controller for human-robot arbitration
based on cooperative differential game theory,” in 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
7881–7887.

[3] L. Roveda, S. Haghshenas, M. Caimmi, N. Pedrocchi, and L. M.
Tosatti, “Assisting operators in heavy industrial tasks: On the design of
an optimized cooperative impedance fuzzy-controller with embedded
safety rules,” Frontiers in Robotics and AI, vol. 6, 2019.

[4] A. Scibilia, N. Pedrocchi, and L. Fortuna, “Modeling of control
delay in human-robot collaboration,” in IECON 2022–48th Annual
Conference of the IEEE Industrial Electronics Society. IEEE, 2022,
pp. 1–6.

[5] G. Nicola, E. Villagrossi, and N. Pedrocchi, “Human-robot co-
manipulation of soft materials: enable a robot manual guidance using
a depth map feedback,” in 2022 31st IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN), 2022,
pp. 498–504.

[6] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar,
“Robotic manipulation and sensing of deformable objects in domestic
and industrial applications: a survey,” The International Journal of
Robotics Research, vol. 37, no. 7, pp. 688–716, 2018.

[7] D. Andronas, Z. Arkouli, N. Zacharaki, G. Michalos, A. Sardelis,
G. Papanikolopoulos, and S. Makris, “On the perception and handling
of deformable objects – a robotic cell for white goods industry,”
Robotics and Computer-Integrated Manufacturing, vol. 77, p. 102358,
2022.

[8] Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez, and E. H. Adelson,
“Cable manipulation with a tactile-reactive gripper,” The International
Journal of Robotics Research, vol. 40, pp. 1385 – 1401, 2020.

[9] W. Wang and D. J. Balkcom, “Knot grasping, folding, and re-
grasping,” The International Journal of Robotics Research, vol. 37,
pp. 378 – 399, 2018.

[10] A. Verleysen, M. Biondina, and F. Wyffels, “Video dataset of hu-
man demonstrations of folding clothing for robotic folding,” The
International Journal of Robotics Research, vol. 39, pp. 1031 – 1036,
2020.

[11] D. Mcconachie, A. Dobson, M. Ruan, and D. Berenson, “Manipulating
deformable objects by interleaving prediction, planning, and control,”
The International Journal of Robotics Research, vol. 39, pp. 957 –
982, 2020.

[12] A. X. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel, “Learning
force-based manipulation of deformable objects from multiple demon-
strations,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 177–184.

[13] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen, “Folding
deformable objects using predictive simulation and trajectory opti-
mization,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015, pp. 6000–6006.

[14] D. Kruse, R. J. Radke, and J. T. Wen, “Collaborative human-robot ma-
nipulation of highly deformable materials,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 3782–
3787.

[15] B. Jia, Z. Hu, J. Pan, and D. Manocha, “Manipulating highly de-
formable materials using a visual feedback dictionary,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018,
pp. 239–246.

[16] B. Jia, Z. Pan, Z. Hu, J. Pan, and D. Manocha, “Cloth manipulation
using random-forest-based imitation learning,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2086–2093, 2019.

[17] D. Sirintuna, A. Giammarino, and A. Ajoudani, “Human-robot collab-
orative carrying of objects with unknown deformation characteristics,”
in 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, pp. 10 681–10 687.

[18] D. Andronas, E. Kampourakis, K. Bakopoulou, C. Gkournelos, P. An-
gelakis, and S. Makris, “Model-based robot control for human-robot
flexible material co-manipulation,” in 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation
(ETFA ), 2021, pp. 1–8.

[19] S. Makris, E. Kampourakis, and D. Andronas, “On deformable ob-
ject handling: Model-based motion planning for human-robot co-
manipulation,” CIRP Annals, vol. 71, no. 1, pp. 29–32, 2022.

[20] D. D. Schepper, G. Schouterden, K. Kellens, and E. Demeester,
“Human-robot mobile co-manipulation of flexible objects by fusing
wrench and skeleton tracking data,” International Journal of Computer
Integrated Manufacturing, vol. 36, no. 1, pp. 30–50, 2023.

[21] P.-C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata,
“Repeatable folding task by humanoid robot worker using deep
learning,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
397–403, 2017.

[22] D. Tanaka, S. Arnold, and K. Yamazaki, “Emd net: An en-
code–manipulate–decode network for cloth manipulation,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 1771–1778, 2018.

[23] Y. Tsurumine and T. Matsubara, “Variationally autoencoded dynamic
policy programming for robotic cloth manipulation planning based on
raw images,” in 2022 IEEE/SICE International Symposium on System
Integration (SII), 2022, pp. 416–421.
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