
Human-robot co-manipulation of soft materials: enable a robot manual
guidance using a depth map feedback

Giorgio Nicola, Enrico Villagrossi, Nicola Pedrocchi

Abstract— Human-robot co-manipulation of large but
lightweight elements made by soft materials, such as fabrics,
composites, sheets of paper/cardboard, is a challenging oper-
ation that presents several relevant industrial applications. As
the primary limit, the force applied on the material must be
unidirectional (i.e., the user can only pull the element). Its
magnitude needs to be limited to avoid damages to the material
itself. This paper proposes using a 3D camera to track the
deformation of soft materials for human-robot co-manipulation.
Thanks to a Convolutional Neural Network (CNN), the acquired
depth image is processed to estimate the element deformation.
The output of the CNN is the feedback for the robot controller
to track a given set-point of deformation. The set-point tracking
will avoid excessive material deformation, enabling a vision-
based robot manual guidance.

I. INTRODUCTION

The human-robot co-manipulation of soft materials is be-
coming a relevant task from the industrial point of view. Sev-
eral industrial sectors such as aerospace, transport, maritime
and renewable energies (e.g. wind power and photovoltaic)
need lightweight composites materials, usually shaped in
large parts challenging to handle and manage using standard
automation. The barrier to automation is both technical and
economic. First, such parts are delicate, and the processes
use irregular raw parts (e.g. tissue remnants). Then, the
production usually has limited throughput and high product
variability. Thus, it is frequent that such production plants
employ several operators, which collaborate in handling
such lightweight but large parts in a dynamic environment.
However, collaboration is often necessary only for a reduced
amount of time (i.e. transportation of parts), bringing to
inefficient production flow.

In such a scenario, the human-robot co-manipulation is
full of potential. The human may act as a skilled coordinator
and one or multiple robots, or Industrial Mobile Manipulators
(IMM)1, may work as an assistive agent avoiding downtimes
and improving the operators’ productivity. Specifically, two
different human-robot interaction modes are possible. First,
the human moves the object in the desired position, and the
robot tracks a certain deformation set-point of the material,
implementing a robot manual guidance, e.g., suitable for
accurate placement of the co-manipulated material. Second,
the robot moves along a predefined trajectory while the
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1For the nomenclature and acronym refer to RiA R15.08 where Au-
tonomous Mobile Robots (AMR), Industrial Mobile Manipulator (IMM),
Autonomous Guided Vehicle (AGV), etcetera, are defined.

human tries to follow the trajectory. Suppose the human
deviates from the nominal trajectory and the material de-
formation set-point is not respected. In that case, the robot
deviates from the nominal trajectory to keep the material
at the desired deformation set-point preventing damages,
e.g., suitable for collaborative transport of material from one
position to another.

A. Related Work

Compared to the manipulation of rigid materials, the
manipulation of soft materials introduces new challenges in
modeling, perception, grasping, and control [1].

The EU H2020 projects Merging [2] and DrapeBot [3] are
pioneering actions coping with these challenges in the indus-
trial scenario. Specifically, the project Merging looks at the
manipulation of flexible and fragile objects exploiting multi-
ple industrial robots, designing new Electro-Adhesive (EA)
grasping devices, developing new robot AI-based program-
ming and control algorithms supported by the information
coming from perception systems fused with the information
coming from a digital twin to estimate the deformations
of flexible elements [4]. The DrapeBot project focuses on
the robotic manipulation of carbon fiber and fiberglass plies
during the draping process; in particular, [5] highlights the
importance of the human-robot co-manipulation when the
dimension of the ply is such as to require more than one
robot.

The recent work [6] shows a compelling example of co-
manipulation of fabric. The user guides the IMM through
gestures recorded by a camera and translated into robot
control signals using a skeleton tracking algorithm and force
feedback. As a drawback, the user has to execute coded
gestures to control the IMM making the cooperation not
natural as between two humans during a collaborative task.

Interaction forces cannot be applied through the de-
formable materials directly to the robot, but only along
one direction by pulling the material when it is taut, so
force-based sensors are insufficient. Therefore, many authors
combined an F/T sensor (i.e. mounted between the robot
flange and the end-effector) or robot joint torque sensors
with a vision system [6], [7]. As a viable solution, [8], [9]
and [10] propose the use of visual feedback to detect the
material deformations both with 2D and 3D sensors.

Manipulating deformable materials in collaboration with
humans or without (often called shape servoing) can be done
with model-based and model-free approaches. In model-
based approaches, a model, physics-based or black-box,
describes the material’s mechanical status (e.g. deformations,



internal stress, etcetera). In [11] a numerical model is in-
troduced to compute the total elastic energy of the material
penalizing deformations from the resting state. The approach
is reliable but with a high computational cost. The model
in [12] exploits a mass-spring system that uses non-linear
springs, dampers, and soft constraints. In [9], after the object
shape tracking, thanks to a shape servoing algorithm, the
flexible material is manipulated to fit an object template
model. The use of a database made by precomputed models
of deformable objects (i.e. clothes) obtained by simulations
is in [13], where each object is modeled as a thin shell to
build the synthetic database.

Instead, model-free methods focus on developing hand-
crafted visual features to be converted directly in robot
commands. In [7] a visual feedback controller from the
RGB-D image extrapolates the region of the materials with
normal vector to much different from the reference. In [8],
[14] a set of visual features called Histogram of Oriented
Wrinkles (HOW) is developed. In [8] a visual feedback
dictionary based on recorded expert users built on top of
HOWs is used to compute robot speed commands. Instead,
in [14] HOWs are given as input to a Random Forest-based
controller trained via imitation learning of an expert user.
Finally, in [15] a set of global and local features is created,
and an upgraded version of Gaussian Process Regression is
used to learn online the controller from feature space to robot
velocity commands.

B. Contribution

This paper proposes a data-driven approach to human-
robot collaborative manipulation of deformable materials.
In detail, a model describing the displacement-deformation
relation is learned offline through a neural network. A 3D
camera provides the depth map used to train the model. The
learned model is used online to determine the displacement
from a nominal configuration, and the displacement is fed
to a Twist controller. This approach, compared to methods
in the literature, has various advantages. First of all, it
does not require performing an online physics simulation
of the deformable object that is computationally expensive,
while computation capability on board of robotic platform
is often limited. Second, the implemented controller is very
straightforward compared to those described in the literature,
such as those based on the deformation Jacobian matrix.
Furthermore, it does not require manually developing visual
features that might not describe the desired problem fully;
instead, the most relevant visual features are autonomously
learned during the offline training phase.

The paper is structured as follows: In Section II the
problem is formulated and formalized; in Section III the
proposed solution is presented; in Section IV the described
method is applied to a real setup and experiments and results
are presented; in Section V conclusions and future works are
detailed.

Fig. 1: system concept description

II. PROBLEM FORMULATION

The problem of human-robot co-manipulation of soft
materials is composed of two agents. The first is the human
(uncontrollable) that leads the activity, and the second is
the robot (controllable) that should adapt to human actions.
The objective is to manipulate the desired object while
minimizing the deformations from a rest configuration that
guarantees not to damage the material. The human brings the
co-manipulated material at one side while the robot handles
the other side, as shown in Figure 1. Thanks to the con-
trollable agent (i.e., the robot), it is possible to compensate
for the inaccuracies introduced by the uncontrollable agent
(i.e., the human) and track a set-point of deformation of the
co-manipulated material.

Soft materials like textiles can be approximated as mem-
branes [16] characterized by the absence of flexural rigidity
and cannot sustain compressive loads. Therefore, deforma-
tions can be caused only by displacements or by traction
forces. This paper considers the manipulation of fabric,
particularly a carbon fiber ply; nevertheless, the method deals
with any material approximable with a membrane.

Moreover, manipulating carbon fiber fabric is challenging.
Indeed, excessive traction forces can easily damage the fiber
structure altering the mechanical property of the material;
hence, the material deformations need to be carefully de-
tected. On top of that, carbon fiber is a highly reflective ma-
terial, and many image analysis techniques struggles. To this
purpose, the use of a depth camera, rigidly attached to the
robot end-effector, that looks at the top of the co-manipulated
element, allows the easy detection of the material shape and
deflections due to the forces applied by the human on the
material (see Figure 1). The vision sensor can detect material
movements along any direction; on the contrary, force-based
sensor measure only traction forces, and excessive traction
forces can easily damage the material itself.

The 3D camera provides the RGB image and the depth
map, and after proper preprocessing, a depth map is obtained
composed only by the segmented carbon fiber ply.

The segmented depth map is fed to an ensemble of
Convolutional Neural Networks (CNNs) trained to estimate
the deformation of the material, in other words, the dis-
tance between the robot gripper and the human hands. The



Fig. 2: Problem formulation.

application of Deep Learning techniques allows defining
a black-box model describing the relation between visual
deformation and mechanical status. This approach is quicker
to evaluate than other numerical models, e.g., Finite Element
Model (FEM), which are computationally expensive and
require additional preprocessing to convert depth images to
a compatible input to the model.

Finally, a heuristic transforms the distance estimation into
the reference for the robot tool velocity.

As shown in Fig. 2, a nominal shape of the carbon
fibre ply is defined as a human-robot reference displace-
ment (drifx , drify , drifz ) and the objective is to compute the
necessary robot displacement (∆dx,∆dy,∆dz) to reach the
nominal shape. We propose a data-driven black-box model
composed of an ensemble of CNNs that, given as input a
depth image of the carbon fiber ply from the robot point
of view, computes the current human-robot displacement
(dx, dy, dz).

III. METHOD

The method described can be divided into four main parts:
dataset acquisition, preprocessing, neural network training,
and robot control. The paper reports a test case with carbon-
fiber plies. Still, the method is general since it does not need
any assumption on the material properties but only an RGB-
D camera.

A. Dataset Acquisition

The dataset to be acquired consists of multiple depth
images of the carbon fiber ply deformed due to the human-
robot relative displacement.

Given the poor quality of a long-dataset when humans are
grasping the ply for hours in bunches of different configura-
tions, we set up an aluminum frame holding the ply frame,
as shown in Fig. 5. Such a frame increases the accuracy and
repeatability of the measurements and the robustness of the
trained model to human grasping positions variability. The
frame, indeed, allows simulating different distances between
hands and different inclinations.

The same camera that measures the ply deformation tracks
a pair of fiducial markers (Apriltags [17]) placed on the

Fig. 3: Example of RGB-D image preprocessing.

frame to detect the frame position relative to the robot,
granting high accuracy in the measure of the relative position
from the frame. A program based on the motion planning
software MoveIt! [18] moves the robot relative to the frame
in the various studied directions. When the robot is in a new
position, we acquire multiple RGB-D images to lower the
noisy camera output. The corresponding label is the distance
in the three directions for each dataset entry.

B. Preprocessing

The developed preprocessing for the training phase is in
Fig. 3. The preprocessing is a two-step algorithm: segmen-
tation and crop plus resize. In detail, in the depth image, the
ply is segmented from the background, the aluminum frame
used during the dataset acquisition, and the human co-worker
during the online phase. First, we set a threshold value of
the depth and put each pixel value above the threshold to
zero. Concurrently to such elaboration, we convert the RGB
image in grayscale and find the AprilTags position. Based
on the tag’s position, a further threshold line is defined, and
we set all pixels above it to zero. During the online phase,
instead of using AprilTags, the RGB image is converted in
HSV color space, and a range of hue values is defined to
segment the carbon fiber ply from the background and the
human co-worker.



Fig. 4: Control scheme.

Finally, the depth image is cropped and rescaled from the
original dimension of 1080 × 1920 pixels to 128 × 128.
During the online phase, to reduce the noise in input to
the CNNs, the last three depth images are averaged, relying
on the higher frame rate of the camera has, about 30 Hz,
compared to the frequency of the controller, Sect. III-D.

C. Neural Network and Training

The model takes inspiration from VGG16 [19]. The net
shares the same general architecture based on blocks of two
convolutional layers interspersed by batch normalization and
then a maxpool layer. After those blocks, fully-connected
layers combined with dropout layers are implemented, and
the net output is the cartesian distance along with the three
directions. The nets’ differences consisted of number blocks,
kernel sizes, and strides of both convolutional and maxpool
layers.

In detail, we trained three slightly different nets on differ-
ent subsets of the dataset, given the fact that multiple depth
images are taken for each relative robot-human position, The
dataset is divided into two separate datasets for each net:
training (80%) and test (20%) datasets. Such choice allows
verification during the model’s training to generalize over
unseen relative robot-human positions.

We used Optuna [20] to optimize the hyperparameters of
each net, implementing the K-fold cross-validation (K=5).
The outputs from the various nets are combined by averag-
ing. As data augmentation, pepper and Gaussian noises and
random translations are applied.

D. Robot Control

The robot control scheme is described in Figure 4. After
the image preprocessing, the model ensemble (i.e. ensemble
of CNNs) outputs the estimated human-robot distance, i.e.,
the ply deformation, and a proportional controller converts
the error in ply deformation, ∆d, to a tool velocity in
the tool frame. To avoid excessive tool velocities, vtool
is saturated to a maximum of 5 cm/s in every direction.
Finally, the tool velocity is converted from the tool frame
to the robot base frame through the rotation matrix Rbase

tool

analytically computed from the robot joints angle θ. The
control frequency is 7 Hz, higher than the average human
reaction time.

Fig. 5: Setup developed for the dataset acquisition.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experimental setup is in shown Figure 5 and is
composed of an industrial manipulator UR10, an Azure
Kinect Camera, and a carbon fiber ply of rectangular shape
with dimension 90x65 cm. The range of studied human-robot
relative displacement was the following:

• −0.15 ≤ x ≤ 0.15 [m];
• 0.5 ≤ y ≤ 0.85 [m];
• −0.15 ≤ z ≤ 0.15 [m] .
The displacement range was discretized in all directions

with step 0.05 meters during the dataset acquisition. Fur-
thermore, nine possible human hand positions combinations
were studied. In conclusion, 455 different human-robot dis-
placements were studied for each human hands position
combination, and 2 RGB-D images were taken, with a total
dataset dimension of 8190 samples.2

The ensemble model used in this application is composed
of 3 neural networks, each achieving an average distance
error of (0.0296, 0.0275, 0.0267) [m]. After averaging
the networks’ output, the final average distance error is
0.0215 [m]. The proposed model was deployed on a PC
desktop with Intel i9-7920X and Nvidia GeForce 3070ti. The
total time to preprocess and evaluate each camera frame is
23.65 ms, which is significantly lower than the frame rate
of the Azure Kinect (30 Hz), allowing the deployment of the
application in real-time. 3

B. Experiments

The Section reports the results of two different tests 4.
First, we analyze the step response to a ply deformation.
Then, we analyze a manual guidance operation.

2Dataset available at 10.5281/zenodo.6380409
3Code for training, testing and deployment available at

https://github.com/giorgionicola/SMAHRCO
4Video describing the experiments available at

https://zenodo.org/record/6379312



(a)

(b)

Fig. 6: Analysis of the step response and estimation error relation to tool speed. for each step response, (a) and (b), it shown
the estimated and real ply deformation along the axis x-y-z and the total estimation error compared with the robot tool
speed.



Fig. 7: Analysis of a manual guidance application. The human-robot reference displacement is converted into robot tool
reference position (orange line). The robot position is the blue line. Green and red dashed lines highlight the start and end
of successive human movement.

1) Step Response Analysis: The ply was attached to the
frame used during the dataset acquisition. The robot starting
position was displaced of a known value from the ply resting
configuration set to (dx = 0, dy = 0.6, dz = 0).

Figures 6a and 6b show the results of two different trials.
In both cases, the robot reaches the ply rest configuration
successfully.

The bottom graphs in Figures 6a and 6b report the estima-
tion error and its relation with the robot tool speed. The error
is maximum at the beginning, decreasing accordingly with
the robot tool speed. Indeed, as detailed in Sect. III-D, the vi-
sion system (camera and preprocessing) runs approximately
at 30 Hz, while the controller receives the averaged last three
frames. On the one hand, averaging the depth images reduces
noise and, therefore, improves the stability of the estimation
of the ply deformation. On the other hand, the average depth
image becomes slightly blurred when the robot tool is high,
and the estimation accuracy decreases.

Nevertheless, the inaccuracy of the estimation is still
consistent with the actual ply deformation, i.e., it never
estimates a deformation in the opposite direction of the real
one. Furthermore, the developed system can recover from
the inaccurate estimation and converge to the desired ply
deformation.

Figure 6b shows the estimation robustness when the
deformation is beyond the limits of the dataset acquisition
campaign. Indeed, the initial deformation in x and z direc-
tions are 0.18 and 0.23 meters. Even though the estimation
is somehow inaccurate in the z-direction, it is still consistent,
and the system can converge to an accurate to the desired

ply deformation.
2) Manual Guidance: Finally, in Figure 7 we studied

the case of manual guidance. The human was required to
perform four movements of arbitrary lengths in the direction
x → z → y → x highlighted between the green (start of the
human movement) and the red (end of the human movement)
dashed lines. The robot could follow human instructions in
all cases, and the robot movements were smooth. Even in this
scenario, the human could efficiently perform movements
that would require the ply to deform beyond the limits in
the dataset, confirming the robustness of the approach.

V. CONCLUSIONS AND FUTURE WORKS

This paper proposes a Data-driven method for human-
robot co-manipulation of flexible materials. The method
implements black-box model, based on an ensemble of
deep neural networks, that estimates current relative human-
robot displacement from depth images. Subsequently, the
displacement error to a reference displacement turns into
Twist command. The paper also describes the methodology
used to acquire the dataset, preprocess it, and train the ensem-
ble model. The proposed method achieved an overall mean
average error of 0.0215 [m], and it requires a computation
time, including preprocessing, of 23.65 ms, thus allowing to
deploy it in real applications. The method was then tested and
proved capable of compensating for undesired deformation
of the carbon fiber ply both during the analysis of a step
deformation response and in a manual guidance application.

Currently, the trained model is limited to movements in
the three principal directions x-y-z, while it does not take



into account rotations. Thus, we plan to acquire a dataset
including also rotations. The proposed method uses, as input,
depth images that are sensitive only to macroscopic defor-
mations; thus, it is not particularly sensitive to traction forces
that typically produce much lower intensity deformations. To
reduce noise, depth images were averaged with the drawback
of increased inaccuracy at higher robot tool speeds. To
solve noisy inputs, the samples taken for each robot position
during the dataset acquisition will increase, the camera noise
during the data augmentation will be simulated faithfully, and
regularization during the training will be increased. Traction
forces could be helpful to discriminate between movements
that produce similar deformations like some translations and
rotation. Therefore, we plan to introduce a sensor fusion
between the forces and RGB-D images. Finally, the method
was tested on a setup with a single industrial manipulator.
However, introducing an IMM or a fleet of IMMs in a
dynamic environment as a robotic partner would significantly
increase the technological fallout of the work.
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