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Abstract— The problem addressed in this work is the arbitra-
tion of the role between a robot and a human during physical
Human-Robot Interaction, sharing a common task. The system
is modeled as a Cartesian impedance, with two separate external
forces provided by the human and the robot. The problem is
then reformulated as a Cooperative Differential Game, which
possibly has multiple solutions on the Pareto frontier. Finally,
the bargaining problem is addressed by proposing a solution
depending on the interaction force, interpreted as the human
will to lead or follow. This defines the arbitration law and
assigns the role of leader or follower to the robot. Experiments
show the feasibility and capabilities of the proposed control
in managing the human-robot arbitration during a shared-
trajectory following task.

Index Terms— physical Human-Robot Interaction, Role Ar-
bitration, Differential Cooperative Game Theory, Adaptive
Control

I. INTRODUCTION

With the large spread of collaborative robots, collaborative
applications involving a human operator and a robot working
together to achieve a common goal represents the industry’s
most recent trend. In contrast to coexistence (when the
human and the robot are in the same environment but do
not interact), synchronization (when they work in the same
workspace, but at different times) and cooperation (when
they work in the same workspace at the same time, though
each focuses on separate tasks), collaboration happens when
the human operator and the robot must execute a task to-
gether, and the action of the one has immediate consequences
on the other [1].

Collaboration requires communication, which typically
happens through interaction forces, leading to physical
Human-Robot Interaction (pHRI) [2]. As discussed in [3],
impedance control is a ubiquitous technique to manage the
pHRI. Initially proposed by Hogan [4], impedance control
has found an increasing interest due to numerous research
works aiming at making it adaptive, in a way such that the
robot behavior adapts to the human one. Such adaptation
happens mainly in two manners, adaptation of the impedance
set-point and adaptation of the mass-spring-damper param-
eters. To the first category belong [5], and [6], where the
damping is made variable since it allows fast/slow motion
depending on its value. Examples of the second category
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can be found in [7] and [8]. Moreover, hybrid controllers
exist, which modify both impedance parameters and set-
point. This happens in [9], [10], where the updated law is
defined by fuzzy logic, in [11], where the parameters are
online updated via Model-Based Reinforcement Learning,
and in [12], where neural networks (NN) updates the de-
sired position, and the impedance parameters are updated to
maintain stability.

In the previous examples, and many other works, the
human-robot interaction is described by a static leader-
follower paradigm, where the human gives input, and the
robot responds consequently, but vice versa never happens.
A step ahead is to consider Human-Robot Arbitration, which
can be defined as the mechanism that assigns task control
to either the human or the robot [13]. Such an issue is
addressed, with different approaches, in [14] [15] [16] [17]

As discussed in [18], game theory provides useful tools
to analyze complex interactive behaviors involving multiple
agents. It provides mathematical models (cooperative, non-
cooperative, multi-stages, etc.) of strategic interaction among
rational decision-makers and provides the players with ”op-
timal” policies to minimize their objectives, taking into
account interaction. Thanks to its capabilities of describing
interactions in an ”optimal” way, controllers for the pHRI
based on game-theoretic formulations are investigated in
the literature. In [19], [20], and similarly, in [21] for the
shared control with an exoskeleton, the continuous role
adaptation is investigated for a Differential Non-Cooperative
game. In these works, the concept of Nash Equilibrium is
used to update the robot cost function according to the
interaction force. The result is a variable impedance control
with damping and stiffness updated online. An extension
of such approaches, also involving position update, can be
found in [22]. The same differential non-cooperative game-
theoretic problem is addressed in [23], [24], with a different
approach for the solution based on policy iteration. Finally, a
general framework for differential game-theoretic modeling
of Human-Robot interaction is presented in [25] for the two
agents game and extended to multiple agents in [26]. An
observer is designed to understand each other’s control laws
in these works, and different behavior can be addressed.

The previous works show that a game-theoretic description
of the human-robot interaction can provide optimal behavior
in a non-cooperative framework. Despite this, Nash equi-
libria (i.e. the solutions of the non-cooperative games) are
frequently not Pareto optimal. Thus, cooperation can often
improve payoffs to all players [27]. Hence, in this paper,
Cooperative Game Theory (CGT) is used to describe the



interaction model, and Pareto solutions are sought. Coop-
eration, indeed, can improve the cost of each agent by
agreeing. Hence, in a cooperative framework, each agent
has an incentive to cooperate since its cost will be low-
ered compared with the non-cooperative solution. Moreover,
a cooperative description of the task allows optimal co-
manipulation of objects. Finally, as described in this work,
Cooperative Game Theory allows for easy role arbitration,
keeping the optimal behavior of the robot. To the best of
the authors’ knowledge, no Cooperative Differential Game-
Theoretic frameworks have been used yet to describe HRI.
This work aims to show the feasibility of the CGT framework
with an application to human-robot arbitration.

II. METHOD

This section presents a system modeled as a Cartesian
impedance with two separate external forces provided by the
human and the robot. The problem is then reformulated as a
Differential Cooperative Game, with solutions lying on the
Pareto frontier. The bargaining problem is addressed with a
formulation depending on the interaction force to define the
arbitration law. Finally, it is shown that such a model results
in an adaptive impedance controller with variable stiffness
and damping.

A. System modeling

Working in the Cartesian space is more intuitive and
natural for the human operator; hence the desired robot
motion at the end-effector is implemented as an impedance
model in the Cartesian space:

Mi ẍ(t)+Di ẋ(t)+Ki (x− x0)(t) = uh(t)+ur(t) (1)

where Mi, Di and Ki ∈R6×6 are the desired inertia, damping
and stiffness matrices, respectively, ẍ(t), ẋ(t) and x(t) ∈ R6

are the Cartesian accelerations, velocities and positions at the
end-effector, x0 the equilibrium position of the virtual spring,
and uh(t)∈R6 and ur(t)∈R6 represent the human and robot
effort applied to the system. The Cartesian coordinates in x
are defined according to [28], with the vector x = [pT φ T ]T

where pT are the position coordinates and φ T the set of
Euler angles that defines the rotation matrix describing the
end-effector orientation. With a little abuse of notation, to
ease the reading, with ẋ = [ṗT ωT ]T is indicated the vector
containing the linear and angular velocities.

After some reformulation, (1) can be rewritten in a lin-
earized state-space formulation around the working point as

ż = Az+Bhuh +Brur (2)

where z = [x− x0 ẋ]T ∈ R12 is the state space vector, A =[
06×6 Ja

−M−1
i Ki −M−1

i Di

]
, B12×6

h = B12×6
r =

[
06×6

M−1
i

]
, with 06×6

denoting a 6×6 zero matrix and Ja the analytical Jacobian
matrix, with the dimensions of the considered Cartesian
components.

Since robot controllers typically accept reference positions
or velocities in the joint space as a control input, it is worth

converting the reference velocities from the Cartesian space
to the joint space.

Given the reference velocity in the Cartesian space, the
following relation allows obtaining reference velocities in
the joint space

q̇re f (t) = J(q)+ẋ(t) (3)

where q̇re f (t)∈Rn, where n represents the number of joints,
are the reference velocities in the joint space, J(q)+ is
the pseudoinverse of the geometric Jacobian matrix. Sim-
ple integration allows commanding joint positions instead
of velocities to the robot. Considering that today’s robots
have excellent tracking performance in the frequency range
excitable by the operator, in this work, hypothesis q̇ ' q̇re f
is assumed to hold.

B. Differential Cooperative Game Theoretic modeling

Rewriting the model (1) as (2), allows to include it in a
Differential Cooperative Game Theory (DCGT) framework,
as described in [29].

The system in (2) can be further rewritten as

ż = Az+Bu (4)

with A12×12 defined as before, B12×12 = [Bh Br] and u =
[uh ur]

T .
The human and the robot can be seen as two agents, each

one with the objective to minimize its quadratic cost function,
defined as

Jh =
∫

∞

0
(zQh z+uh Rh uh) dt (5)

and
Jr =

∫
∞

0
(zQr z+ur Rr ur) dt (6)

where Jh and Jr are the cost that the human and the robot
incur, Qh ∈R2n×2n and Qr ∈R2n×2n weights on the state and
Rh ∈ R6×6 and Rr ∈ R6×6 weights on the control input. The
human weights Qh and Rh are unknown and cannot be set
as the robot parameters Qr and Rr. A reasonable estimate
of the human parameters, Q̂h and R̂h, can be obtained with
inverse model control similarly to [30], [31]. The problem
here presented can be summarized as finding the ur and uh
of (5) and (6) subject to the system dynamics defined in
(4), and game theory provides a framework for finding such
solutions.

Given the system in 4, the problem reduces to find the con-
trol action u as a composition of feedback and feedforward
terms, defined as

u =−K f bz+K f f zre f (7)

where the apices f b and f f denote feedback and feedforward
gain matrices, respectively.

While in Non-cooperative Game Theory, the solutions
are represented by the Nash equilibria, in Linear Quadratic
Cooperative Game Theory, each feasible solution lies on the
Pareto frontier (see [29] for definitions).



The cost to be minimized from the two players together
is defined as

Jα = α Jh +(1−α)Jr =
∫

∞

0
(zQα z+uRα u) dt (8)

where Qα = α Q̂h + (1 − α)Qr and Rα =[
α R̂h 06×6

06×6 (1−α)Rr

]
, and α ∈ (0,1) represents the weight

each player’s cost has in the overall cost.
To find all cooperative solutions for the feedback linear-

quadratic game, one has to solve a regular Linear Quadratic
optimal control problem that depends on a parameter α . The
solution is given by the matrix P, solution of the infinite
horizon Continuous Algebraic Riccati Equation (CARE),
given by

AT P+PA−PBR−1
α BT P+Qα = 0 (9)

The feedback gain matrix is defined as

K f b = R−1
α BT P (10)

and the feedback control actions are given by

u f b =−K f bz(t) (11)

From (11) the feedback control terms demanded from the
human and the robot can be computed as

u f b =

[
ū f b

h
u f b

r

]
(12)

where ū f b denotes the nominal effort demanded to the
human. A feedforward term is added to allow trajectory
tracking.

The feedforward gain matrix is defined as

K f f = [K f b I]
[

A B
C D

]−1 [0
I

]
(13)

with A and B as in (4), and C and D output and feedthrough
matrices of the state-space system description, respectively.
The feedforward term results in

u f f = K f f zre f . (14)

Since the system matrix is typically not square in this
formulation, the pseudoinverse can be used instead of the
inverse. This results in a vector of dimension 12, and its
components are

u f f =

[
ū f f

h
u f f

r

]
(15)

with the superscripts h and r denoting the human and robot
contributions.

Finally, the total control input results in u = u f f +u f b, and
the control action of the robot can be computed as

ur = u f f
r +u f b

r (16)

C. Bargaining

In a cooperative environment, it is rational to consider
the set of Pareto solutions. Since there are infinity Pareto-
optimal solutions, we enter the bargaining theory arena to
decide which is the most effective one. The bargaining
problem is how to define the appropriate α . In classical
bargaining solutions (Nash, Kalay-Smorodinsky, egalitarian),
α is defined such that the cost of all players decreases
compared to their non-cooperative cost.

In this work, the two players bargain on who leads and
follows the task; in this sense, one can accept a higher cost if
he is the follower. Hence, α is used as a weighting factor to
move the control authority from the robot to the human and
vice-versa. Indeed, for high values of α , the robot cost tends
to disappear from the overall cost computation Jα . Hence it
will be less costly for the robot to put much effort into the
system, becoming the leader, resulting in a higher cost for the
human. On the contrary, for low values of α , the robot cost
increases, and its control input will be dramatically reduced,
leading the control authority to the human. Each situation in
between represents a cooperative solution where the control
authority is shared appropriately.

The selection of the weight parameter α depends on the
force applied by the human and is processed by the sigmoid
function:

α = d− a
1+ e−b(‖uh‖−c)

(17)

where the constant parameters a, b, c, d are used to shape the
function properly. In particular a defines the height of the
function, b the width of the transition phase, c represents an
offset in the x direction and d is an offset in the y direction,
moreover the negative sign after d means that α is decreasing
as ‖uh‖ increases.

D. The control law as a variable impedance

Looking at (12), can be divided into two components and
the control inputs demanded from the human and the robot
are computed as [

ū f b
h

u f b
r

]
=−

[
K f b

h
K f b

r

]
z(t) (18)

where Kh ∈R6×m and Kr ∈R6×m are the components of the
matrix K defined in (10). Looking at the robot control input,
the feedback part can be rewritten as

u f b
r =−K f b

r

[
x− x0

ẋ

]
(19)

Given K f b
r = [K f b

r,k K f b
r,d ], the two components associated

with the stiffness and damping of the variable impedance
cooperative system are defined as

K f b
imp = K f b

r,k (20)

and
D f b

imp = K f b
r,d (21)



A similar computation can be done for the feedforward
terms, resulting in

u f f
r = K f f

r xre f (22)

where K f f
r represents the components relative to the robot

of the matrix (13) and

K f f
imp = K f f

r (23)

The robot control input results in

ur =−D f b
impẋ−K f b

imp(x− x0)+K f f
impxre f (24)

Substituting (24) into (1) results in

Mi ẍ(t)+(Di +D f b
imp)ẋ(t)+

+(Ki +K f b
imp)(x(t)− x0(t))−K f f

imp xre f (t) = uh(t)
(25)

Because varying α varies matrix P and matrix K accordingly,
(25) represents a variable impedance system subject to the
human force, with the values of Dimp and Kimp updated
according to the human will to lead or follow, detected by
force applied.

III. EXPERIMENTS

An experiment is designed to test the proposed control
method for sharing control authority in human-robot collab-
oration. The robot has to follow a planar circular trajectory,
while the human has a different path to follow, which
partially overlaps with the robot one. The nominal robot
trajectory is defined as

xre f ,r(t) =
[
−ρ sin(ω t)
−ρ cos(ω t)

]
(26)

where ρ = 0.2 is the radius of the circumference and ω is
the angular velocity.

The human desired trajectory is piecewise-defined as

xre f ,h(t) =



xre f ,r(t), t0 < t < t1[
−ρ sin(ω t)

x1 +
x2−x1
t2−t1

(t− t0)

]
, t1 < t < t2[

−ρ sin(ω t)
x2 +

x3−x2
t3−t2

(t− t1)

]
, t2 < t < t3

xre f ,r(t), t3 < t

(27)

with t0 = 0s, t1 = 3s, t2 = 5s, t3 = 7s.
The nominal robot trajectory, the desired human trajectory,

and the current position are shown in real-time on a screen,
and the human has the goal to make the current trajectory
as close as possible to the human desired trajectory. Figure
1 shows the experimental setup.

In Figure 2 the nominal trajectory of the robot (dashed
red line), the desired trajectory of the human (dashed yellow
line), and the actual robot end-effector positions (solid blue
line) are shown.

To test and compare the proposed approach, the following
indices are computed:

• Trajectory following error, measured as

Etrack =
∫ Tend

Tstart

∥∥xre f ,h(t)− x(t)
∥∥ dt (28)

As low the Etrack is, as close the actual trajectory is to
the nominal one

• Geometrical following error, measured as

EXcorr =
∫ Tend

Tstart

∥∥xre f ,h(t +δ t)− x(t)
∥∥ dt (29)

where δ t represents the time delay of the actual tra-
jectory with respect to the nominal one, computed by
applying cross-correlation between the nominal trajec-
tory of the human and the measured one. In this way,
it is possible to compare the capability of the human to
track the geometrical reference. As low the EXcorr is, as
close the actual trajectory is to the geometrical one

• Measured interaction force, measured as

F =
∫ Tend

Tstart

‖ f (t)‖ dt (30)

As low the F is, as less effort the human has to put in
the cooperative task

• Mechanical work, measured as

W =
∫ Tend

Tstart

~f (t) ·d~S dt (31)

The lower the W is, the less energy the human has to
put into the cooperative task

The goal of the proposed controller is to allow smooth
interaction and leader-follower transition with the human,
reducing the effort required and allowing good trajectory
tracking. Hence the goal is to minimize the indexes defined
above together.

As a comparison, three different types of impedance
controllers are used. The CGT controller is compared with
an LQR controller, which can be seen as the CGT with
α = 1 always, and two classical impedance controllers with
different values of stiffness K. One has high stiffness (HIC),
and the other has a low value of stiffness (LIC). For the

Fig. 1: The experimental setup, showing the application and
the monitor displaying the three trajectories: magenta - robot
desired trajectory, blue - human desired trajectory, green -
actual trajectory.



two classical impedance controllers (HIC, LIC), the value of
the damping to achieve the critical damping D = 2Dcr

√
KM.

For the LQR and CGT controllers, the values of damping
and stiffness depend on the matrices Q̂h, R̂h, Qr and Rr,
defined as Q̂h = diag(50,50,1,1), R̂h = diag(10,10,0,0),
Qr = diag(20,20,1,1) and Rr = diag(1,1,0.01,0.01) for
the CGT case, Rr = diag(1,1,0.1,0.1) for the LQR case,
otherwise the stiffness was too high and too much force was
required to barely move the robot. The Q̂h and R̂h used
are average values. The mass matrix for all the cases is
defined as M = diag(10,10), the base damping and stiffness
for the CGT and LQR cases are K = diag(0,0) and D =
diag(40,40). The mass-spring-damper parameters used or
computed for the experiments are presented in Table I, while
Figure 3 shows the changing parameters during the task.
For the CGT case, the value of α is bounded such that
0.01≤ α ≤ 0.99, and the sigmoid parameters are chosen to
be a = 0.98, b = 0.7, c = 7, d = 0.99.

TABLE I: The mass, spring and damping parameters used
for the experiments.

CGT HIC LIC LQR
K 55 ÷ 550 100 20 222
D 53 ÷ 135 57 25.5 84

D/Dcr 1.13 ÷ 0.92 0.9 0.9 0.89
M 10 10 10 10

IV. RESULTS

In the test campaign, five subjects (age 30 ± 1) are asked
to perform the task five times for each controller. Before
starting the test, the subjects are allowed to practice as long
as needed to feel confident with the current controller, then
five trials in a row with the same controller are recorded. This
procedure is used for each of the four controllers, selected
randomly for each subject.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-0.05

0

0.05

0.1

0.15

0.2

trajectory comparison

current pose

robot reference

human reference

Fig. 2: Comparison between the nominal trajectory of the
robot, the nominal trajectory of the human and the measured

A UR5 robot is used, controlled by joint velocities. (2) is
used to compute the Cartesian reference positions, and (3)
provides the robot joint velocity tracking controller with the
reference values. A Robotiq FT 300, mounted on the robot
tip, is used to measure the force applied by the human.

A t-test compares the CGT controller in pairs with all the
others for each of the computed indexes. The t-test allows
defining the statistical relevance of the computed values.
The results are in Figure 4, with the mean and standard
deviations, as well as the relative p-values.

The tracking error, computed as in (28), is shown in Figure
4a. The CGT controller shows the best performance, and
the t-test assesses the statistical relevance of the measured
values. This result can be explained by the robot’s high
stiffness/low damping ratio while the robot is leading and the
low stiffness/high damping ratio while the human is leading.
On the one hand, the high stiffness/low damping ratio allows
fast and reliable trajectory tracking, as well as fast recovery
after a trajectory modification (i.e. the robot is faster in
getting back to its nominal trajectory after the human leaves
control). On the other hand, a low stiffness/high damping
ratio allows the human to move the robot smoothly and
precisely while leading. Compared to the LIC, constant high
stiffness values allow better trajectory tracking in HIC and
LQR.

The geometrical error, computed as in (29) is shown in 4b.
The t-test shows that no significant differences between the
four controllers can be appreciated. This shows that the tasks
are executed correctly, and the comparison of the controllers
for the computed indexes is fair. Indeed, this shows that
similar results can be obtained in terms of geometrical path
following with all the controllers.

The force evaluation is presented in 4c. Since the ex-
changed force mainly depends on the robot stiffness ( mea-
sured as f = K(xre f ,r − x)), the lower the stiffness is, the
lower the exchanged force. This effect results in the LIC
with the best performance concerning the required force.
Despite this, the CGT controller shows better performance
with respect to LQR and HIC because when interaction
happens, its stiffness lowers. Notably, performances similar
to the LIC can be obtained by a different tuning of the values
of matrices Qr,Rr.

Finally, similar considerations can be derived for the
mechanical work shown in Figure 4d. Indeed, depending
on the interaction force, similar behavior is observed with
respect to the force results.

V. DISCUSSION

The results show that being equal to the capability of
the four controllers in following the nominal geometrical
path under human-robot cooperation, the CGT controller
outperforms the others in trajectory following. Moreover,
even if the LIC requires less interaction force to accomplish
the task, it shows the lowest capability in trajectory tracking,
and the CGT also requires low interaction forces. As a
remark, a similar interaction force can be obtained for the
CGT controller by tuning the parameters differently.
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Fig. 3: Variable parameters for the CGT
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Interestingly, from Table I and Figure 3d, it can be noted
that the critical damping value varies from lower than critical
to higher than critical, according to the role adaptation. This
effect allows the robot to have a more damped behavior
when the human is leading, allowing smooth motion, while a
low damping ratio allows better and faster trajectory tracking
when the robot is leading.

Some limitations of the proposed control can be identified.
First, the human control objective (i.e. the human cost
function parameters) can only be estimated offline with some
inverse techniques. Future works will address online estima-
tion techniques for the human control objective estimation to
adapt the robot behavior accordingly. Indeed, it is reasonable
to suppose that the human may change his cost function
parameters due to fatigue by repeating a task all day long.
Secondly, many parameters have to be defined arbitrarily.
In particular, it is difficult to predict the variable damping
and stiffness values. Hence, it may be interesting to define
some tuning rules according to the required performances.
Moreover, the arbitration law introduced in this work is a
simple function of the force, but it can be improved and
modified according to other sensing capabilities and different
human intention estimations. Future work will address a
more complex and improved arbitration law involving visual
feedback and human intention estimation, along with force
feedback. In such a way, with a more complex sensor-fusion,
a more precise estimate of the human will to lead or follow
can be obtained. Some future applications of this framework
will involve the co-manipulation and the co-transportation of
heavy objects, as well as lightweight parts and deformable
objects as composite materials plies. Another interesting

application can be for rehabilitation purposes, where the
robot behavior is adjusted by tuning the parameter α , to make
the robot contribution high when the patient is barely able
to perform a task and gradually lower the robot contribution
as the patient starts to recover some motion capabilities.

VI. CONCLUSION

This work proposes a framework for physical Human-
Robot interaction based on a Cooperative Game theory for-
mulation. The bargaining problem is addressed with the law
definition for the leader-follower role arbitration. The results
show the capability of the proposed method in managing
the leader-follower transition continuously and show that
with the proposed controller, high performance in tracking a
trajectory, different from the nominal one of the robot, can
be achieved through role arbitration.

In conclusion, the proposed framework shows good capa-
bilities in describing a human-robot cooperative task. It al-
lows easy integration of different modules (human cost func-
tion identification, human intention identification) and easy
implementation of different robot behaviors (leader-follower
adaptation, co-manipulation, co-transportation), which will
be investigated in future works. Future works will consider
different solutions to the bargaining problem to provide
the robot with the proper control input, possibly involving
constraints on the maximum allowed input.
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“Inverse optimal control for identification in non-cooperative
differential games,” IFAC-PapersOnLine, vol. 50, no. 1, pp.
14 909–14 915, 2017, 20th IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896317334602
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