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Abstract—Nowadays, many applications involving humans and
robots working together require physical interaction. It is known
that, during an interaction, the mutual understanding and
knowledge of the partner’s goal improves and allows natural
interaction. For this purpose, this work proposes Inverse Optimal
Control (IOC) to recover the cost function of a human performing
a reaching task with a robot in passive impedance control. This
work presents the potentialities and limitations of the presented
IOC method to describe human objectives. This work represents
a preparatory study toward smooth and natural physical Human-
Robot Interaction (pHRI), intending to understand the basic
information on humans’ behavior.

Index Terms—Inverse Optimal Control, physical Human-
Robot Interaction

I. INTRODUCTION

With the large spread of collaborative robots and applica-
tions, the need to make Human-Robot Interaction as natural as
possible arises, especially when they must cooperate through
physical interaction, in the so-called physical Human-Robot
Interaction (pHRI) [1], [2]. Indeed, in pHRI, the human
operator and the robot must execute a task together, and the
action of the one has immediate consequences on the other
[3].

It was shown that humans understand each other’s intentions
while physically interacting to perform a task [4]. While this
naturally comes for humans, the same does not apply to the
robotic partner. Then, it is also interesting to allow the robot
to understand its partner’s objective.

Many techniques and models are studied and presented
in the literature to describe human and human-machine be-
havior. Such models span from elementary models (humans
as a spring) to complex neuromuscular models and Optimal
Control models, depending on the need. For a complete and
up-to-date review, please see [5].

Provided that Game Theory (GT) represents a robust frame-
work to describe an individual’s behavior during interaction
[6], this work focuses on the identification of optimal behav-
iors of humans, and the recovery of the human cost function,
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as this modeling allows direct integration into GT frameworks.
Optimal Control (OC) aims to find a control action for a
dynamic system over a time window such that a cost function
is minimized. Conversely, Inverse Optimal Control (IOC) tech-
niques are adopted to recover the cost function that produced
observed control actions and state histories.

The most common strategy used in IOC is to parametrize
an unknown objective function as a weighted sum of rele-
vant features (or basis functions) with unknown weights [7].
This model is also adopted to describe human behaviors in
performing different tasks. In [8], human jumping is studied,
highlighting the possibility that the cost function varies during
the task. In [9] and [10] study human movement by detecting
changes to the optimization criterion during a squat task.
In [11], human arm reaching is studied, considering free-
space reaching motions. The results show a trade-off between
kinematics and dynamics-based controllers depending on the
reaching task. Interestingly, this trade-off depends on the initial
and final arm configurations. [12] also studies human arm
motions, with applications to human-robot collaboration in a
shared workspace. These works involve cost functions with
multiple features but consider only motions in the free space,
without accounting for interactions.

If the only cost function’s features considered are the state
and control action, the problem is reduced to a typical Linear
Quadratic Regulator (LQR). In this case, more specific IOC
techniques exist. Such techniques compute the weight matrices
starting from the feedback matrix and not the complete control
and state histories[13] [14] [15]. Interestingly, such methods
do not require the entire trajectory to identify the cost function,
but only the knowledge of the gain matrix is sufficient. Finally,
such approaches appear suitable to study humans in interaction
with autonomous agents, described by Game Theory, as in
[16], [17], [18].

Motivated by the previous studies, this work aims at im-
plementing IOC to understand the fundamental behavior of
humans interacting with a variable, passive system. It is
possible to obtain basic yet valuable information to develop
natural pHRI controllers. The simple LQR model is studied.
Indeed, despite its simplicity, as shown, LQR cost functions
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can capture essential human behaviors during the interaction.
Moreover, modeling the human’s cost function as the LQR cost
function allows easy integration in Linear Quadratic Game-
Theoretic (LQGT) framework, which provides useful tools for
pHRI controllers design [19], [20], [21].

Even though it was shown that the recovered cost functions
of the humans have different values if recovered from manual
control or shared control [22], this work, as a preparatory
study, aims at understanding the differences and things in
common between various subjects cost functions. This pro-
vides useful insights into humans’ behavior, which should be
considered for future studies.

II. METHOD
In this section, the robot behavior is modeled as a Cartesian

impedance subject to the external force applied by the human,
and the system is rewritten in a state-space formulation.
Optimal control to model human behavior is introduced, and
the Inverse Optimal Control technique is adopted to recover
the unknown human control objective.

A. System modeling

Working in the Cartesian space is more intuitive and natural
for the human operator; hence the desired robot motion at the
end-effector is implemented as an impedance model in the
Cartesian space:

Mi ẍ(t)+Di ẋ(t)+Ki(x(t)− x0(t)) = uh(t) (1)

where Mi, Di and Ki ∈ R6×6 are the desired inertia, damping
and stiffness impedance matrices, respectively, x0(t)∈R6 is the
vector containing the equilibrium positions at the end-effector,
uh(t) ∈ R6 represents the human effort applied to the system.
The Cartesian coordinates in x and xre f are defined according
to [23], with the vector x= [pT φ T ]T where pT are the position
coordinates and φ T the set of Euler angles that defines the
rotation matrix describing the end-effector orientation. With
ẋ = [vT ωT ]T is indicated the vector containing the linear and
angular velocities.

After some reformulation, (1) can be rewritten in a lin-
earized state-space formulation around the working point as

ż = Az+Bhuh (2)

where z = [x−x0 ẋ]T ∈ R12 is the state space vector, while the
matrices

A =

[
06×6 Ja

−M−1
i Ki −M−1

i Di

]
and

B12×6
h =

[
06×6

M−1
i

]
are the state and input matrices, respectively, with 06×6 denot-
ing a 6×6 zero matrix and Ja the analytical Jacobian matrix,
with the dimensions of the considered Cartesian components.

Robot controllers typically accept as control input reference
positions or velocities in the joint space; hence, it is worth
converting the reference velocities from the Cartesian space
to the joint space.

Given the reference velocity in the Cartesian space, the
following relation allows obtaining reference velocities in the
joint space

q̇re f (t) = J(q)+ẋ(t), (3)

with q̇re f (t)∈ Rn, where n represents the number of joints, are
the reference velocities in the joint space, J(q)+ is the pseu-
doinverse of the geometric Jacobian matrix. Simple integration
allows commanding joint positions instead of velocities to the
robot. Considering that today’s robots have excellent tracking
performance in the frequency range excitable by the operator,
in this work, hypothesis q̇ ≃ q̇re f is assumed to hold.

B. Optimal Control Problem

Many previous works describe human’s intention as the
minimization of a quadratic cost function. In particular, it
is possible to assume the cost function as quadratic on the
state and control input, leading to the LQR formulation of
the problem, (as examples see [19], [21], [24]). Therefore, the
human objective can be described as the minimization of a
quadratic cost function, defined as

Jh =
∫

∞

0
(zQh z+uh Rh uh) dt (4)

where Jh is the cost that the human incurs, Qh ∈ R2n×2n is
a matrix containing weights on the state, and Rh ∈ R6×6 is a
matrix of weights on the control input.

Remark 1. The human’s model weights Qh and Rh are
unknown and must be identified. A reasonable estimate of the
human parameters, Q̂h and R̂h, can be obtained with the IOC
method as presented in the following section.

Given the control objective in (4), and the system dynamics
in (2), the LQR Optimal Control Problem can be summarized
as

min
u

Jh =
∫

∞

0
(zQh z+uh Rh uh) dt

s.t.ż = Az+Bh uh

z(t0) = z0

(5)

The LQR optimal control has the feedback form

uh =−K z(t) (6)

in which the human control action is described as linear
feedback proportional to the system’s state. In (6), the matrix
K represents the feedback gain matrix, copmuted as

K = R−1
h BT P (7)

in which, the matrix P is the unique solution for the feedback
linear-quadratic optimal control problem, solution of the infi-
nite horizon Continuous Algebraic Riccati Equation (CARE),
given by

AT P+PA−PBhR−1
h BT

h P+Qh = 0. (8)



C. Human objective identification

Given the definition of the direct Optimal Control Problem
as in (5), this section addresses the Inverse Optimal Control
problem. That is, given observed state and control histories,
denoted as z̄ and ūh, given the system dynamics in (2), recover
the cost function (4) that produced such control histories.

As discussed in the Introduction, different IOC techniques
exist. Among the various, this work implements the one
presented in [15], considering the human as the only active
player, as briefly described in this section.

1) Gain identification: The method relies on the knowledge
of the feedback gain matrix. Because the gain matrix of the
human is not known, it has to be recovered. If the complete
trajectory (or a sufficient part of it) is known, it is possible to
apply the Least Square Method (LSM), and the matrix Kh is
obtained from

K̂h = argmin
Kh

∫ t f

ti
∥Kh z̄(t)+ ūh(t)∥2 dt (9)

where ti and t f indicate the initial and final time of the
trajectory (or a sufficient portion of it), and the symbol ˆ(·)
indicates an estimate of the real value.

2) Inverse Optimal Control: This section briefly presents
the main steps to recover the cost function of a player. Refer
to [15] for the full treatment. As preliminary, denote ⊕ as the
Kronecker sum, defined as

X ⊕Y = (X ⊗ Iq)+(Ir ⊗Y ) (10)

with X ∈ Rr×r and Y ∈ Rq×q.
Given A, B, and K̂h, the Inverse Optimal Control (IOC)

problem can be solved as follows. First, denote F , F⊕, K̂⊕
and Z as

F = A−BK̂h,
F⊕ = FT ⊕FT ,
K̂⊕ = K̂T

h ⊕ K̂T
h ,

Z = (In ⊗BT )F−1
⊕

M =
[
Z Z K̂⊕ + K̂T ⊗ I

]
Then, denote θ as the vector of vectorized weights as

θ = [vec(Q̂) vec(R̂)]T . (11)

As demonstrated in [15], if θ satisfies

M θ = 0 (12)

the Q̂ and R̂ are the correct unkown parameter for (8).
Given that (12) is a reformulation of (8), the parameter set

of the inverse LQ differential system is given by

θ = ker(M) (13)

with convex boundaries such that Rh > 0. As typical in IOC
problems, a residual is defined as

r = M θ (14)

to consider non-optimal behaviors and imperfect modeling of
K̂. The following quadratic problem is formulated to minimize
the residual

min
θ

||r||22 =
1
2

θ
T H θ

s.t. I θ ≥ 0
R > 0

(15)

with H = 2MT M.

Remark 2. All the λ θ , λ > 0 solutions are acceptable, since
the solution of problem (5) is the same for any λ J, λ > 0.

Remark 3. The constraints in (15) are imposed by Optimal
Control necessary conditions, i.e. matrix Q semi-positive def-
inite and matrix R strictly positive definite.

III. EXPERIMENTS

In this section, experimental results are presented. First, the
design of experiments is presented, with comments on the
evaluation procedure, then results are presented and analyzed.

A. Design of experiments

Three subjects are involved in this study. Each subject is
asked to move the robot end-effector to a fixed, unknown set-
point along the z-axis. The impedance parameters of the robot
are set to M = 10, and three values of damping D= [25, 50, 75]
are tested to verify how different systems modify the control
objective. The stiffness is set K = 0. Each subject is asked to
perform 12 set-point reaching for each damping value for a
total of 36 reaching tasks. Each reaching is along the x–axis
only, with the set-point at various, random distances. Before
each recording session, the subject is allowed to practice for
a while to gain confidence with the system.

The measured exchanged forces, the reference position, and
the actual positions compute the IOC problem. The forces are
measured with a Robotiq FT300 sensor mounted on the robot
tip. The robotic system gives the positions directly, and the
velocities are computed by differentiating the positions.

The human cost function matrices, as typically happens
[16], [18], are assumed to be nonzero only on the diagonal
terms, resulting in Q = diag([q1,q2]), and R = r. Moreover,
since the solution to the optimal control problem is the same
for any λ Jh with λ scalar, as additional constraint to (15) is
set q1 = 1. In this way, all the recovered cost functions are
comparable.

A first analysis is done on the recovered features (q1, q2
and r) from (15) to check their variation with respect to the
variations of the system. In the ideal scenario, the weights
can be different between different subjects. Despite this, each
subject should have constant weight values, even when varying
the system’s parameters.

A measure of the control input is defined to evaluate the
goodness of the recovered costs as

Eu =

∫ t f
t0 u(t)− û(t) dt

umax
(16)
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Fig. 1: Mean and standard deviations of the recovered control
weights

where umax is the maximum measured control effort, and
it is used to normalize the errors to make the comparison
fair. The recovered control input û(t) is computed by running
a system simulation. In the ideal case, this value should be
zero. Defining the set-point as xsp = xre f − x0, and the Raise
Time RT as the time required to move the system from x0 to
0.95 xsp, it is possible to define a ratio

RTsp =
RT
xsp

, (17)

to check how the different systems influence the raise time by
removing dependency from the set-point distance. In the ideal
case, the ratio should be the same for a given system with any
set-point and should increase by increasing the damping.

Finally, a possible relation between the distance from set-
point and weight on control is investigated. In the ideal case,
the values of R should always be the same, without regard for
the set-point.
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Fig. 2: risetime over setpoint computation

B. Results

As previously discussed, the weight q1 is constrained to
be q1 = 1, and the other weights q2 and r are computed
consequently. From the experiments, all the subjects have a
negligible q2, with values in the order of 1e−4. This means
that the human feedback is based mainly on position, as also
happens in [22]. Since the values of q2 are very close to 0,
the rest of this paper will approximate them with 0 without
further analysis.

Given q2 = 0, the ratio between q1 and r drives the system’s
response. The analysis of the values of R, visible in figure 1,
shows that humans have a low weight also in how much effort
is put into the task. The low value of r, compared with q1,
means that a fast set-point reaching is more favorable than
saving effort.

Moreover, three subjects tend to decrease the value of r as
the damping increase, which means that reaching the desired
position at a specific time should remain almost constant
against changes in the system.
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Fig. 3: Correlation between control weight identified and different setpoints, for subject 3
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Figure 2 also displays such a behavior. shows the ratio RTsp.

The Figure shows a minimal increment in the ratio com-
pared with the increment of damping, particularly in subjects
2 and 3, confirming that humans appear more interested in
time than in the effort required.

This study also shows a correlation between the set-point
distance and the weight a human gives to the control effort.
The farther the set-point is, the higher the control weight, as
shown in figure 3.

The error between the measured and reconstructed control
input is analyzed. Figure 4 shows the normalized error between
the measured and the simulated control effort of the three
subjects in the three scenarios.

Finally, figure 5 presents one control history measured and
recovered for each subject in the study, with the corresponding
normalized error.

C. Discussion

This work’s analysis suggests human modeling as an op-
timal controller and hints about real human intention. The
most relevant result is that humans tend to keep the required
time as constant as possible when performing a task. This is
probably a consequence of the fact that a human control works
as feedback on a visual stimulus and keeps this control -which
is not considered in the presented study- constant.

Despite this, optimal control modeling of a human inter-
acting with a robot can still be adopted, keeping in mind
some baseline rules shown in the results section. The human’s
weight on control input decreases if the system becomes more
rigid against motions and decreases as the desired position
becomes closer to the current one.

IV. CONCLUSIONS

This work presents a study of the human behavior modeled
as optimal control during physical Human-Robot Interaction.
Theoretical modeling of the system and control model is
presented, and the formulation of the Inverse Optimal Control
is presented. IOC is used to recover the cost functions of three
subjects performing a reaching task interacting with different
robot behavior. The analysis shows that OC modeling of a
human may be used and gives good results with some caution.

Such a model presents applications in designing game-
theoretical-based controllers for pHRI, in which the knowledge
of the other’s cost function is necessary. Moreover, it can also
be used as a reference in modeling human behavior for digital
twin simulations.

Future works will study more complex models with different
cost functions that consider other features, such as accelera-
tion, jerk, time that results relevant, and energy. Moreover,
different interacting strategies, such as cooperative and non-
cooperative game theory, will be analyzed to understand how
two humans behave when performing interacting tasks and
which one model interaction better.
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subject 2. Eu = 46.32
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Fig. 5: Example of one trial of each subject.
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