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Abstract—This work studies the role-arbitration between a
robot and a human during physical Human-Robot Interaction.
The system is modeled as a Cartesian impedance, with the
human and the robot interacting by applying two separate
external forces. A reformulation of the problem as a Cooperative
Differential Game allows addressing the bargaining problem
by proposing a solution depending on the human interaction
force, interpreted as the will to lead or follow. This defines the
arbitration law and assigns the role of leader or follower to
the robot. Experiments show the feasibility and capabilities of
the proposed control in managing the human-robot arbitration
during a shared-trajectory following task.

Index Terms—physical Human-Robot Interaction, Role Arbi-
tration, Cooperative Differential Game Theory, Adaptive Control,
Impedance Control

I. INTRODUCTION

With the large spread of collaborative robots, collaborative
applications involving a human operator and a robot working
together to achieve a common goal represents the industry’s
most recent trend. In contrast to coexistence (when the human
and the robot are in the same environment but do not interact),
synchronization (when they work in the same workspace, but
at different times) and cooperation (when they work in the
same workspace at the same time, though each focuses on
separate tasks), collaboration happens when the human opera-
tor and the robot must execute a task together, and the action
of the one has immediate consequences on the other [1]. Col-
laboration requires communication, which typically happens
through interaction forces, leading to physical Human-Robot
Interaction (pHRI) [2]. In the case the human and the robot
can have complementary roles, Human-Robot Role Arbitration
defines the mechanism that assigns task control to either the
human or the robot [3]. As discussed in [4], game theory
provides useful tools to analyze complex interactive behaviors
involving multiple agents. It provides mathematical models
(cooperative, noncooperative, multi-stages, etc.) of strategic
interaction among rational decision-makers and provides the
players with ”optimal” policies to minimize their objectives,
taking into account interaction. In [5], [6], and similarly, in [7],
for the shared control with an exoskeleton, the continuous role
adaptation is investigated for a Differential Non-Cooperative
game. In these works, the concept of Nash Equilibrium is used
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to update the robot cost function according to the interaction
force. Finally, a general framework for differential game-
theoretic modeling of Human-Robot interaction is presented in
[8] for the two agents game and extended to multiple agents in
[9]. The previous works show that a game-theoretic description
of the human-robot interaction can provide optimal behavior
in a non-cooperative framework. Despite this, Nash equilibria
(i.e. the solutions of the non-cooperative games) are frequently
not Pareto optimal. Thus, cooperation can often improve
payoffs to all players [10]. Hence, in this work, Cooperative
Game Theory (CGT) is used to describe the interaction model,
and Pareto solutions are sought. Cooperation, indeed, can
improve the cost of each agent by agreeing. This work briefly
presents the method introduced in [11]. Please refer to it for
full equations derivation and a deeper work description.

II. METHOD

This section presents the methodology adopted in this work
to model the system, the interaction and the solution.

A. Cooperative game theoretic system modeling
Working in the Cartesian space is more intuitive and natural

for the human operator; hence the desired robot motion at the
end-effector is implemented as an impedance model in the
Cartesian space.

Mi ẍ(t) +Di ẋ(t) +Ki (x− x0)(t) = uh(t) + ur(t) (1)

The system is then reformulated in a classical linear state-
space formulation for integration with the Game Theoretic
framework, resulting in

ż = Az +Bhuh +Brur = Az +BGTuGT (2)

with Bgt = [Bh, Br], and uGT = [uh, ur]
T , and z = [p, v]T

the state vector containing positions and velocities.
For the game-theoretic formulation, the human and the robot

are assumed to minimize a quadratic cost function on the state
and on the control input, defined as

Ji =

∫ ∞

0

(z Qi z + ui Ri ui) dt (3)

with the subscript i=h,r identifying the human and the robot.
A shared cost function is defined, where the parameter α

represents the agreement between the two.

Jα = αJh + (1− α) Jr =

∫ ∞

0

(z Qα z + uRα u) dt (4)
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Fig. 1: Indexes comparison

with Qα and Rα representing weighted cost matrices. The
minimization of Jα is the same as an LQR minimization,
which provides the system with the optimal feedback gain
matrix Kfb = R−1

α BT
GTP and the feedforward gain matrix

defined as Kff = [Kfb I]

[
A BGT

C D

]−1 [
0
I

]
.

The control input is computed as

uGT = ufb + uff = −Kfbz(t) +Kffzref (t) (5)

and finally, to obtain the robot control input take the bottom
rows of (5). Note that the gain matrices multiply positions
and velocities, the robot contribution can be seen as additional
stiffness and damping to the system in (1), leading the system
to a variable impedance control.

B. Bargaining solution

In a cooperative environment, there are infinite Pareto
optimal solutions and the bargaining theory addresses which
is the most effective one. The bargaining problem is how to
define the appropriate α. In this work, the two players bargain
on who leads and follows the task; in this sense, one can
accept a higher cost if he is the follower. Hence, α is used
as a weighting factor to move the control authority from the
robot to the human and vice-versa. Each situation in between
represents a cooperative solution where the control authority
is shared appropriately. The selection of the weight parameter
α depends on the force applied by the human and is processed
by the sigmoid function:

α = d− a

1 + e−b(||uh||−c)
(6)

where the constant parameters a, b, c, d are used to shape the
function properly.

III. EXPERIMENTS

An experiment is designed to test the proposed control
method for sharing control authority in human-robot collab-
oration. The robot has to follow a planar circular trajectory,
while the human has a different path to follow, which partially
overlaps with the robot one. The presented control is compared
with other three similar controllers, High stiffness Impedance
Controller (HIC), Low stiffness Impedance Controller (LIC),
and LQR impedance controller. Table I shows the mass, spring,

TABLE I: The mass, spring and damping parameters used for
the experiments.

CGT HIC LIC LQR
K 55 ÷ 550 100 20 222
D 53 ÷ 135 57 25.5 84

D/Dcr 1.13 ÷ 0.92 0.9 0.9 0.89
M 10 10 10 10

and damping values used. Note that spring and damping vary
according to interaction, so a range is shown. It is interesting
to observe that the damping ratio varies from values lower to
greater than 1, allowing fast tracking with robot leading, and
high damping with human leading. Four indices are evaluated
for comparison: (i) trajectory following error: which measures
the quality of tracking the human reference trajectory, (ii)
path tracking following error: which measures the capacity to
follow the geometrical path, (iii) measured interaction force:
measures the force required by the human to follow its target
trajectory, and (iv) mechanical work: measures the energy
required by the human to follow its target trajectory. Figure 1
shows the results as the mean and standard deviation of the
measured indexes for the four controllers. Despite the CGT
controller is not the best one in all the cases, it can be seen
that it is the one that overall minimizes all indexes together.
Particularly interesting is also the variable damping behavior
(see table I), which switches between values above and below
the critical one, allowing fast motion when the robot is leading,
and damped motion when the human is.

IV. CONCLUSIONS

In conclusion, the proposed framework shows good ca-
pabilities in describing a human-robot cooperative task. It
allows easy integration of different modules (human cost func-
tion identification, human intention identification) and easy
implementation of different robot behaviors (leader-follower
adaptation, co-manipulation, co-transportation), which will be
investigated in future works. Finally, such an approach will
be extended to the cooperative human-robot transportation of
carbon fiber plies and implemented in the context of the EU
project DrapeBot.
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