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Abstract—Human-robot  co-manipulation of large but
lightweight elements made by soft materials is a challenging
operation that presents several relevant industrial applications.
This paper proposes using a 3D camera to track the deformation
of soft materials for human-robot co-manipulation. Thanks to
a Convolutional Neural Network (CNN), the acquired depth
image is processed to estimate the element deformation. The
output of the CNN is the feedback for the robot controller to
track a given set-point of deformation.

I. INTRODUCTION

The human-robot co-manipulation of soft materials is be-
coming a relevant task from the industrial point of view, such
as in aerospace, transport, maritime industries. Compared to
the manipulation of rigid materials, it introduces new chal-
lenges in modeling, perception, grasping, and control [1]. In
[2], the user guides the IMM (Industrial Mobile Manipulator)
through gestures recorded by a camera and translated into
robot control signals using a skeleton tracking algorithm and
force feedback. Manipulating deformable materials in collab-
oration with humans or without (often called shape servoing)
can be done with model-based [3]-[6] and model-free [7]-
[10] approaches. In model-based approaches, a physics-based
or black-box model describes the material’s mechanical status
(e.g. deformations, internal stress, etc.). Instead, model-free
methods focus on developing handcrafted visual features to be
converted directly into robot commands. This paper proposes
to learn a model describing the displacement-deformation
relation through a neural network, taking a depth map from a
3D camera as input. The model is used online to determine the
displacement from a nominal configuration, and the displace-
ment is fed to a Twist controller. This approach, compared to
methods in the literature, has various advantages: 1) it is very
straightforward compared to those described in the literature,
such as those based on the deformation Jacobian matrix; 2)
it does not require manually developing visual features that
might not describe the desired problem fully.

II. METHOD
A. Problem Formulation

Soft materials like textiles can be approximated as mem-
branes [11] characterized by the absence of flexural rigidity
and cannot sustain compressive loads. Therefore, deformations
can be caused only by displacements or by traction forces.
Assuming neglectable traction forces, the material shape is
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Fig. 1. Problem formulation.

univocally defined as the relative distance between the robot
and the human grasping points. As shown in Figure 1, a nom-
inal shape of the carbon fibre ply is defined as a human-robot
reference displacement (d5/, d7f, dZ*/) and the objective is to
compute the necessary robot displacement (Ad,, Ady, Ad)
to reach the nominal shape. We propose a data-driven black-
box model composed of an ensemble of CNNs that, given as
input a depth image from the robot point of view, computes
the current human-robot displacement (d, d;, d.).

B. Dataset Acquisition

The dataset to be acquired consists of multiple depth images
of a carbon fiber ply deformed due to the human-robot relative
displacement.

To increase the accuracy and repeatability of the measure-
ments and the robustness of the trained model, the human is
substituted with a frame that allows simulation of different
human grasping positions.

The frame position is estimated via a pair of fiducial markers
(Apriltags [12]), and the robot moves relatively to the frame
in the various studied directions. In each robot pose, multiple
RGB-D images are acquired to lower the noisy camera output.
The corresponding label is the distance in the three directions
for each dataset entry.

C. Neural Network and Training

The model takes inspiration from VGG16 [13]. The net
shares the same general architecture based on blocks of two
convolutional layers interspersed by batch normalization and
then a maxpool layer. After those blocks, fully-connected
layers combined with dropout layers are implemented, and
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the net output is the Cartesian distance along with the three
directions.

In detail, we trained three slightly different nets on different
subsets of the dataset, given the fact that multiple depth images
are taken for each relative robot-human position, The dataset is
divided into two separate datasets for each net: training (80%)
and test (20%) datasets. Such choice allows verification during
the model’s training to generalize over unseen relative robot-
human positions.

We used Optuna [14] to optimize the hyperparameters of
each net, implementing the K-fold cross-validation (K=5). The
outputs from the various nets are combined by averaging. As
data augmentation, pepper and Gaussian noises and random
translations are applied.

D. Robot Control

The robot control scheme is described in Figure 2. After
the image preprocessing, the model ensemble (i.e., ensemble
of CNNs) outputs the estimated human-robot distance, i.e.,
the ply deformation, and a proportional controller converts the
error in ply deformation, Ad, to a tool velocity in the tool
frame. To avoid excessive tool velocities, v;,,; iS saturated to
a maximum of 5 [em/s[ in every direction. Finally, the tool
velocity is converted from the tool frame to the robot base
frame through the rotation matrix Ri’ggf analytically computed
from the robot joints angle 6. The control frequency is 7 [Hz],
higher than the average human reaction time.

III. EXPERIMENTS

The Section reports the results of two different tests !. First,
we analyze the step response to a ply deformation. Then, we
analyze a manual guidance operation.

1) Step Response Analysis: the ply was attached to the
frame used during the dataset acquisition. The robot starting
position was displaced of a known value from the ply resting
configuration set to (d; = 0,d, = 0.6,d, = 0).

Figures II-D and II-D show the results of two different trials.
In both cases, the robot reaches the ply rest configuration
successfully.

The bottom graphs in Figures II-D and II-D report the
estimation error and its relation with the robot tool speed. The
error is maximum at the beginning, decreasing accordingly
with the robot tool speed. Indeed, as detailed in Section II-D,
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experiments

the vision system (camera and preprocessing) runs approxi-
mately at 30 [Hz], while the controller receives the averaged
last three frames. On the one hand, averaging the depth images
reduces noise and, therefore, improves the stability of the
estimation of the ply deformation. On the other hand, the
average depth image becomes slightly blurred when the robot
tool is high, and the estimation accuracy decreases.

Nevertheless, the inaccuracy of the estimation is still consis-
tent with the actual ply deformation, i.e., it never estimates a
deformation in the opposite direction of the real one. Further-
more, the developed system can recover from the inaccurate
estimation and converge to the desired ply deformation.

Figure 3 shows the estimation robustness when the deforma-
tion is beyond the limits of the dataset acquisition campaign.
Indeed, the initial deformation in x and z directions are 0.18
and 0.23 [m]. Even though the estimation is somehow inac-
curate in the z-direction, it is still consistent, and the system
can converge to an accurate to the desired ply deformation.

2) Manual Guidance: finally, in Figure 4 we studied the
case of manual guidance. The human was required to perform
four movements of arbitrary lengths in the direction x — z —
y — « highlighted between the green (start of the human
movement) and the red (end of the human movement) dashed
lines. The robot could follow human instructions in all cases,
and the robot movements were smooth. Even in this scenario,
the human could efficiently perform movements that would
require the ply to deform beyond the limits in the dataset,
confirming the robustness of the approach.

IV. CONCLUSIONS AND FUTURE WORKS

This paper proposes a Data-driven method for human-robot
co-manipulation of flexible materials. The method implements
black-box model, based on an ensemble of deep neural net-
works, that estimates current relative human-robot displace-
ment from depth images. Subsequently, the displacement error
to a reference displacement turns into Twist command. The
paper also describes the methodology used to acquire the
dataset, preprocess it, and train the ensemble model. The
proposed method achieved an overall mean average error of
0.0215 [m], and it requires a computation time, including
preprocessing, of 23.65 [ms], thus allowing to deploy it in real
applications. The method was then tested and proved capable
of compensating for undesired deformation of the carbon fiber
ply both during the analysis of a step deformation response
and in a manual guidance application.

Currently, the model is limited to movements in the three
directions x-y-z, and it does not take into account rotations.
Thus, we plan to acquire a dataset including also rotations. The
proposed method uses, as input, depth images that are sensitive
only to macroscopic deformations; thus, it is not particularly
sensitive to traction forces that typically produce much lower
intensity deformations. To reduce noise, depth images were
averaged with the drawback of increased inaccuracy at higher
robot tool speeds. To solve noisy inputs, the samples taken
for each robot position during the dataset acquisition will
increase, the camera noise during the data augmentation will
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Fig. 3. Analysis of the step response and estimation error relation to tool speed. for each step response, (a) and (b), it shown the estimated and real ply

deformation along the axis x-y-z and the total estimation error compared with the robot tool speed.
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Fig. 4. Analysis of a manual guidance application. The human-robot reference displacement is converted into robot tool reference position (orange line). The
robot position is the blue line. Green and red dashed lines highlight the start and end of successive human movement.

be simulated faithfully, and regularization during the training
will be increased. Traction forces could be helpful to discrim-
inate between movements that produce similar deformations
like some translations and rotation. Therefore, we plan to
introduce a sensor fusion between the forces and RGB-D
images. Finally, the method was tested on a setup with a single
industrial manipulator. However, introducing an IMM or a fleet
of IMMs in a dynamic environment as a robotic partner would
significantly increase the technological fallout of the work.
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